Algebra lineare Esempi
x+3y−z=4 , 3y−z=0 , x−y+5z=0
Passaggio 1
Write the system as a matrix.
⎡⎢
⎢⎣13−1403−101−150⎤⎥
⎥⎦
Passaggio 2
Passaggio 2.1
Perform the row operation R3=R3−R1 to make the entry at 3,1 a 0.
Passaggio 2.1.1
Perform the row operation R3=R3−R1 to make the entry at 3,1 a 0.
⎡⎢
⎢⎣13−1403−101−1−1−35+10−4⎤⎥
⎥⎦
Passaggio 2.1.2
Semplifica R3.
⎡⎢
⎢⎣13−1403−100−46−4⎤⎥
⎥⎦
⎡⎢
⎢⎣13−1403−100−46−4⎤⎥
⎥⎦
Passaggio 2.2
Multiply each element of R2 by 13 to make the entry at 2,2 a 1.
Passaggio 2.2.1
Multiply each element of R2 by 13 to make the entry at 2,2 a 1.
⎡⎢
⎢
⎢⎣13−140333−13030−46−4⎤⎥
⎥
⎥⎦
Passaggio 2.2.2
Semplifica R2.
⎡⎢
⎢⎣13−1401−1300−46−4⎤⎥
⎥⎦
⎡⎢
⎢⎣13−1401−1300−46−4⎤⎥
⎥⎦
Passaggio 2.3
Perform the row operation R3=R3+4R2 to make the entry at 3,2 a 0.
Passaggio 2.3.1
Perform the row operation R3=R3+4R2 to make the entry at 3,2 a 0.
⎡⎢
⎢
⎢
⎢⎣13−1401−1300+4⋅0−4+4⋅16+4(−13)−4+4⋅0⎤⎥
⎥
⎥
⎥⎦
Passaggio 2.3.2
Semplifica R3.
⎡⎢
⎢
⎢⎣13−1401−13000143−4⎤⎥
⎥
⎥⎦
⎡⎢
⎢
⎢⎣13−1401−13000143−4⎤⎥
⎥
⎥⎦
Passaggio 2.4
Multiply each element of R3 by 314 to make the entry at 3,3 a 1.
Passaggio 2.4.1
Multiply each element of R3 by 314 to make the entry at 3,3 a 1.
⎡⎢
⎢
⎢⎣13−1401−130314⋅0314⋅0314⋅143314⋅−4⎤⎥
⎥
⎥⎦
Passaggio 2.4.2
Semplifica R3.
⎡⎢
⎢
⎢⎣13−1401−130001−67⎤⎥
⎥
⎥⎦
⎡⎢
⎢
⎢⎣13−1401−130001−67⎤⎥
⎥
⎥⎦
Passaggio 2.5
Perform the row operation R2=R2+13R3 to make the entry at 2,3 a 0.
Passaggio 2.5.1
Perform the row operation R2=R2+13R3 to make the entry at 2,3 a 0.
⎡⎢
⎢
⎢
⎢⎣13−140+13⋅01+13⋅0−13+13⋅10+13(−67)001−67⎤⎥
⎥
⎥
⎥⎦
Passaggio 2.5.2
Semplifica R2.
⎡⎢
⎢
⎢⎣13−14010−27001−67⎤⎥
⎥
⎥⎦
⎡⎢
⎢
⎢⎣13−14010−27001−67⎤⎥
⎥
⎥⎦
Passaggio 2.6
Perform the row operation R1=R1+R3 to make the entry at 1,3 a 0.
Passaggio 2.6.1
Perform the row operation R1=R1+R3 to make the entry at 1,3 a 0.
⎡⎢
⎢
⎢
⎢⎣1+03+0−1+1⋅14−67010−27001−67⎤⎥
⎥
⎥
⎥⎦
Passaggio 2.6.2
Semplifica R1.
⎡⎢
⎢
⎢
⎢⎣130227010−27001−67⎤⎥
⎥
⎥
⎥⎦
⎡⎢
⎢
⎢
⎢⎣130227010−27001−67⎤⎥
⎥
⎥
⎥⎦
Passaggio 2.7
Perform the row operation R1=R1−3R2 to make the entry at 1,2 a 0.
Passaggio 2.7.1
Perform the row operation R1=R1−3R2 to make the entry at 1,2 a 0.
⎡⎢
⎢
⎢
⎢
⎢⎣1−3⋅03−3⋅10−3⋅0227−3(−27)010−27001−67⎤⎥
⎥
⎥
⎥
⎥⎦
Passaggio 2.7.2
Semplifica R1.
⎡⎢
⎢
⎢⎣1004010−27001−67⎤⎥
⎥
⎥⎦
⎡⎢
⎢
⎢⎣1004010−27001−67⎤⎥
⎥
⎥⎦
⎡⎢
⎢
⎢⎣1004010−27001−67⎤⎥
⎥
⎥⎦
Passaggio 3
Use the result matrix to declare the final solution to the system of equations.
x=4
y=−27
z=−67
Passaggio 4
The solution is the set of ordered pairs that make the system true.
(4,−27,−67)