Algebra lineare Esempi
x+2y-z=4x+2y−z=4 , 2x+y+z=-2 , x+2y+z=2
Passaggio 1
Write the system as a matrix.
[12-14211-21212]
Passaggio 2
Passaggio 2.1
Perform the row operation R2=R2-2R1 to make the entry at 2,1 a 0.
Passaggio 2.1.1
Perform the row operation R2=R2-2R1 to make the entry at 2,1 a 0.
[12-142-2⋅11-2⋅21-2⋅-1-2-2⋅41212]
Passaggio 2.1.2
Semplifica R2.
[12-140-33-101212]
[12-140-33-101212]
Passaggio 2.2
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
Passaggio 2.2.1
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
[12-140-33-101-12-21+12-4]
Passaggio 2.2.2
Semplifica R3.
[12-140-33-10002-2]
[12-140-33-10002-2]
Passaggio 2.3
Multiply each element of R2 by -13 to make the entry at 2,2 a 1.
Passaggio 2.3.1
Multiply each element of R2 by -13 to make the entry at 2,2 a 1.
[12-14-13⋅0-13⋅-3-13⋅3-13⋅-10002-2]
Passaggio 2.3.2
Semplifica R2.
[12-1401-1103002-2]
[12-1401-1103002-2]
Passaggio 2.4
Multiply each element of R3 by 12 to make the entry at 3,3 a 1.
Passaggio 2.4.1
Multiply each element of R3 by 12 to make the entry at 3,3 a 1.
[12-1401-1103020222-22]
Passaggio 2.4.2
Semplifica R3.
[12-1401-1103001-1]
[12-1401-1103001-1]
Passaggio 2.5
Perform the row operation R2=R2+R3 to make the entry at 2,3 a 0.
Passaggio 2.5.1
Perform the row operation R2=R2+R3 to make the entry at 2,3 a 0.
[12-140+01+0-1+1⋅1103-1001-1]
Passaggio 2.5.2
Semplifica R2.
[12-1401073001-1]
[12-1401073001-1]
Passaggio 2.6
Perform the row operation R1=R1+R3 to make the entry at 1,3 a 0.
Passaggio 2.6.1
Perform the row operation R1=R1+R3 to make the entry at 1,3 a 0.
[1+02+0-1+1⋅14-101073001-1]
Passaggio 2.6.2
Semplifica R1.
[120301073001-1]
[120301073001-1]
Passaggio 2.7
Perform the row operation R1=R1-2R2 to make the entry at 1,2 a 0.
Passaggio 2.7.1
Perform the row operation R1=R1-2R2 to make the entry at 1,2 a 0.
[1-2⋅02-2⋅10-2⋅03-2(73)01073001-1]
Passaggio 2.7.2
Semplifica R1.
[100-5301073001-1]
[100-5301073001-1]
[100-5301073001-1]
Passaggio 3
Use the result matrix to declare the final solution to the system of equations.
x=-53
y=73
z=-1
Passaggio 4
The solution is the set of ordered pairs that make the system true.
(-53,73,-1)