Algebra lineare Esempi
, ,
Passaggio 1
Passaggio 1.1
Sposta tutti i termini contenenti variabili sul lato sinistro dell'equazione.
Passaggio 1.1.1
Sottrai da entrambi i lati dell'equazione.
Passaggio 1.1.2
Sottrai da entrambi i lati dell'equazione.
Passaggio 1.2
Riordina e .
Passaggio 1.3
Sottrai da entrambi i lati dell'equazione.
Passaggio 1.4
Riordina e .
Passaggio 1.5
Sottrai da entrambi i lati dell'equazione.
Passaggio 2
Rappresenta il sistema di equazioni con una matrice.
Passaggio 3
Passaggio 3.1
Write in determinant notation.
Passaggio 3.2
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in column by its cofactor and add.
Passaggio 3.2.1
Consider the corresponding sign chart.
Passaggio 3.2.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Passaggio 3.2.3
The minor for is the determinant with row and column deleted.
Passaggio 3.2.4
Multiply element by its cofactor.
Passaggio 3.2.5
The minor for is the determinant with row and column deleted.
Passaggio 3.2.6
Multiply element by its cofactor.
Passaggio 3.2.7
The minor for is the determinant with row and column deleted.
Passaggio 3.2.8
Multiply element by its cofactor.
Passaggio 3.2.9
Add the terms together.
Passaggio 3.3
Moltiplica per .
Passaggio 3.4
Calcola .
Passaggio 3.4.1
È possibile trovare il determinante di una matrice usando la formula .
Passaggio 3.4.2
Semplifica il determinante.
Passaggio 3.4.2.1
Semplifica ciascun termine.
Passaggio 3.4.2.1.1
Moltiplica per .
Passaggio 3.4.2.1.2
Moltiplica per .
Passaggio 3.4.2.2
Sottrai da .
Passaggio 3.5
Calcola .
Passaggio 3.5.1
È possibile trovare il determinante di una matrice usando la formula .
Passaggio 3.5.2
Semplifica il determinante.
Passaggio 3.5.2.1
Semplifica ciascun termine.
Passaggio 3.5.2.1.1
Moltiplica per .
Passaggio 3.5.2.1.2
Moltiplica per .
Passaggio 3.5.2.2
Somma e .
Passaggio 3.6
Semplifica il determinante.
Passaggio 3.6.1
Semplifica ciascun termine.
Passaggio 3.6.1.1
Moltiplica per .
Passaggio 3.6.1.2
Moltiplica per .
Passaggio 3.6.2
Sottrai da .
Passaggio 3.6.3
Somma e .
Passaggio 4
Since the determinant is not , the system can be solved using Cramer's Rule.
Passaggio 5
Passaggio 5.1
Replace column of the coefficient matrix that corresponds to the -coefficients of the system with .
Passaggio 5.2
Find the determinant.
Passaggio 5.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in column by its cofactor and add.
Passaggio 5.2.1.1
Consider the corresponding sign chart.
Passaggio 5.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Passaggio 5.2.1.3
The minor for is the determinant with row and column deleted.
Passaggio 5.2.1.4
Multiply element by its cofactor.
Passaggio 5.2.1.5
The minor for is the determinant with row and column deleted.
Passaggio 5.2.1.6
Multiply element by its cofactor.
Passaggio 5.2.1.7
The minor for is the determinant with row and column deleted.
Passaggio 5.2.1.8
Multiply element by its cofactor.
Passaggio 5.2.1.9
Add the terms together.
Passaggio 5.2.2
Moltiplica per .
Passaggio 5.2.3
Calcola .
Passaggio 5.2.3.1
È possibile trovare il determinante di una matrice usando la formula .
Passaggio 5.2.3.2
Semplifica il determinante.
Passaggio 5.2.3.2.1
Semplifica ciascun termine.
Passaggio 5.2.3.2.1.1
Moltiplica per .
Passaggio 5.2.3.2.1.2
Moltiplica per .
Passaggio 5.2.3.2.2
Sottrai da .
Passaggio 5.2.4
Calcola .
Passaggio 5.2.4.1
È possibile trovare il determinante di una matrice usando la formula .
Passaggio 5.2.4.2
Semplifica il determinante.
Passaggio 5.2.4.2.1
Semplifica ciascun termine.
Passaggio 5.2.4.2.1.1
Moltiplica per .
Passaggio 5.2.4.2.1.2
Moltiplica per .
Passaggio 5.2.4.2.2
Somma e .
Passaggio 5.2.5
Semplifica il determinante.
Passaggio 5.2.5.1
Semplifica ciascun termine.
Passaggio 5.2.5.1.1
Moltiplica per .
Passaggio 5.2.5.1.2
Moltiplica per .
Passaggio 5.2.5.2
Somma e .
Passaggio 5.2.5.3
Somma e .
Passaggio 5.3
Use the formula to solve for .
Passaggio 5.4
Substitute for and for in the formula.
Passaggio 5.5
Dividi per .
Passaggio 6
Passaggio 6.1
Replace column of the coefficient matrix that corresponds to the -coefficients of the system with .
Passaggio 6.2
Find the determinant.
Passaggio 6.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Passaggio 6.2.1.1
Consider the corresponding sign chart.
Passaggio 6.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Passaggio 6.2.1.3
The minor for is the determinant with row and column deleted.
Passaggio 6.2.1.4
Multiply element by its cofactor.
Passaggio 6.2.1.5
The minor for is the determinant with row and column deleted.
Passaggio 6.2.1.6
Multiply element by its cofactor.
Passaggio 6.2.1.7
The minor for is the determinant with row and column deleted.
Passaggio 6.2.1.8
Multiply element by its cofactor.
Passaggio 6.2.1.9
Add the terms together.
Passaggio 6.2.2
Moltiplica per .
Passaggio 6.2.3
Moltiplica per .
Passaggio 6.2.4
Calcola .
Passaggio 6.2.4.1
È possibile trovare il determinante di una matrice usando la formula .
Passaggio 6.2.4.2
Semplifica il determinante.
Passaggio 6.2.4.2.1
Semplifica ciascun termine.
Passaggio 6.2.4.2.1.1
Moltiplica per .
Passaggio 6.2.4.2.1.2
Moltiplica .
Passaggio 6.2.4.2.1.2.1
Moltiplica per .
Passaggio 6.2.4.2.1.2.2
Moltiplica per .
Passaggio 6.2.4.2.2
Sottrai da .
Passaggio 6.2.5
Semplifica il determinante.
Passaggio 6.2.5.1
Moltiplica per .
Passaggio 6.2.5.2
Somma e .
Passaggio 6.2.5.3
Somma e .
Passaggio 6.3
Use the formula to solve for .
Passaggio 6.4
Substitute for and for in the formula.
Passaggio 6.5
Dividi per .
Passaggio 7
Passaggio 7.1
Replace column of the coefficient matrix that corresponds to the -coefficients of the system with .
Passaggio 7.2
Find the determinant.
Passaggio 7.2.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Passaggio 7.2.1.1
Consider the corresponding sign chart.
Passaggio 7.2.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Passaggio 7.2.1.3
The minor for is the determinant with row and column deleted.
Passaggio 7.2.1.4
Multiply element by its cofactor.
Passaggio 7.2.1.5
The minor for is the determinant with row and column deleted.
Passaggio 7.2.1.6
Multiply element by its cofactor.
Passaggio 7.2.1.7
The minor for is the determinant with row and column deleted.
Passaggio 7.2.1.8
Multiply element by its cofactor.
Passaggio 7.2.1.9
Add the terms together.
Passaggio 7.2.2
Moltiplica per .
Passaggio 7.2.3
Moltiplica per .
Passaggio 7.2.4
Calcola .
Passaggio 7.2.4.1
È possibile trovare il determinante di una matrice usando la formula .
Passaggio 7.2.4.2
Semplifica il determinante.
Passaggio 7.2.4.2.1
Semplifica ciascun termine.
Passaggio 7.2.4.2.1.1
Moltiplica per .
Passaggio 7.2.4.2.1.2
Moltiplica .
Passaggio 7.2.4.2.1.2.1
Moltiplica per .
Passaggio 7.2.4.2.1.2.2
Moltiplica per .
Passaggio 7.2.4.2.2
Sottrai da .
Passaggio 7.2.5
Semplifica il determinante.
Passaggio 7.2.5.1
Moltiplica per .
Passaggio 7.2.5.2
Somma e .
Passaggio 7.2.5.3
Somma e .
Passaggio 7.3
Use the formula to solve for .
Passaggio 7.4
Substitute for and for in the formula.
Passaggio 7.5
Dividi per .
Passaggio 8
Elenca la soluzione al sistema di equazioni.