Esempi

Trova gli autovettori/autospazi
Passaggio 1
Trova gli autovalori.
Tocca per altri passaggi...
Passaggio 1.1
Imposta la formula per trovare l'equazione caratteristica .
Passaggio 1.2
La matrice identità o matrice unità della dimensione è la matrice quadrata con gli uno sulla diagonale principale e gli zero altrove.
Passaggio 1.3
Sostituisci i valori noti in .
Tocca per altri passaggi...
Passaggio 1.3.1
Sostituisci per .
Passaggio 1.3.2
Sostituisci per .
Passaggio 1.4
Semplifica.
Tocca per altri passaggi...
Passaggio 1.4.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.4.1.1
Moltiplica per ogni elemento della matrice.
Passaggio 1.4.1.2
Semplifica ogni elemento nella matrice.
Tocca per altri passaggi...
Passaggio 1.4.1.2.1
Moltiplica per .
Passaggio 1.4.1.2.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 1.4.1.2.2.1
Moltiplica per .
Passaggio 1.4.1.2.2.2
Moltiplica per .
Passaggio 1.4.1.2.3
Moltiplica .
Tocca per altri passaggi...
Passaggio 1.4.1.2.3.1
Moltiplica per .
Passaggio 1.4.1.2.3.2
Moltiplica per .
Passaggio 1.4.1.2.4
Moltiplica per .
Passaggio 1.4.2
Aggiungi gli elementi corrispondenti.
Passaggio 1.4.3
Simplify each element.
Tocca per altri passaggi...
Passaggio 1.4.3.1
Sottrai da .
Passaggio 1.4.3.2
Somma e .
Passaggio 1.4.3.3
Somma e .
Passaggio 1.4.3.4
Sottrai da .
Passaggio 1.5
Find the determinant.
Tocca per altri passaggi...
Passaggio 1.5.1
È possibile trovare il determinante di una matrice usando la formula .
Passaggio 1.5.2
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 1.5.2.1
Riscrivi utilizzando la proprietà commutativa della moltiplicazione.
Passaggio 1.5.2.2
Moltiplica per sommando gli esponenti.
Tocca per altri passaggi...
Passaggio 1.5.2.2.1
Sposta .
Passaggio 1.5.2.2.2
Moltiplica per .
Passaggio 1.5.2.3
Moltiplica per .
Passaggio 1.5.2.4
Moltiplica per .
Passaggio 1.5.2.5
Moltiplica per .
Passaggio 1.6
Imposta il polinomio caratteristico pari a per trovare gli autovalori .
Passaggio 1.7
Risolvi per .
Tocca per altri passaggi...
Passaggio 1.7.1
Somma a entrambi i lati dell'equazione.
Passaggio 1.7.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Passaggio 1.7.3
Qualsiasi radice di è .
Passaggio 1.7.4
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Tocca per altri passaggi...
Passaggio 1.7.4.1
Per prima cosa, utilizza il valore positivo di per trovare la prima soluzione.
Passaggio 1.7.4.2
Ora, utilizza il valore negativo del per trovare la seconda soluzione.
Passaggio 1.7.4.3
La soluzione completa è il risultato delle porzioni positiva e negativa della soluzione.
Passaggio 2
The eigenvector is equal to the null space of the matrix minus the eigenvalue times the identity matrix where is the null space and is the identity matrix.
Passaggio 3
Find the eigenvector using the eigenvalue .
Tocca per altri passaggi...
Passaggio 3.1
Sostituisci i valori noti nella formula.
Passaggio 3.2
Semplifica.
Tocca per altri passaggi...
Passaggio 3.2.1
Sottrai gli elementi corrispondenti.
Passaggio 3.2.2
Simplify each element.
Tocca per altri passaggi...
Passaggio 3.2.2.1
Sottrai da .
Passaggio 3.2.2.2
Sottrai da .
Passaggio 3.2.2.3
Sottrai da .
Passaggio 3.2.2.4
Sottrai da .
Passaggio 3.3
Find the null space when .
Tocca per altri passaggi...
Passaggio 3.3.1
Write as an augmented matrix for .
Passaggio 3.3.2
Trova la forma ridotta a scala per righe di Echelon.
Tocca per altri passaggi...
Passaggio 3.3.2.1
Multiply each element of by to make the entry at a .
Tocca per altri passaggi...
Passaggio 3.3.2.1.1
Multiply each element of by to make the entry at a .
Passaggio 3.3.2.1.2
Semplifica .
Passaggio 3.3.2.2
Perform the row operation to make the entry at a .
Tocca per altri passaggi...
Passaggio 3.3.2.2.1
Perform the row operation to make the entry at a .
Passaggio 3.3.2.2.2
Semplifica .
Passaggio 3.3.3
Use the result matrix to declare the final solution to the system of equations.
Passaggio 3.3.4
Write a solution vector by solving in terms of the free variables in each row.
Passaggio 3.3.5
Write the solution as a linear combination of vectors.
Passaggio 3.3.6
Write as a solution set.
Passaggio 3.3.7
The solution is the set of vectors created from the free variables of the system.
Passaggio 4
Find the eigenvector using the eigenvalue .
Tocca per altri passaggi...
Passaggio 4.1
Sostituisci i valori noti nella formula.
Passaggio 4.2
Semplifica.
Tocca per altri passaggi...
Passaggio 4.2.1
Aggiungi gli elementi corrispondenti.
Passaggio 4.2.2
Simplify each element.
Tocca per altri passaggi...
Passaggio 4.2.2.1
Somma e .
Passaggio 4.2.2.2
Somma e .
Passaggio 4.2.2.3
Somma e .
Passaggio 4.2.2.4
Somma e .
Passaggio 4.3
Find the null space when .
Tocca per altri passaggi...
Passaggio 4.3.1
Write as an augmented matrix for .
Passaggio 4.3.2
Trova la forma ridotta a scala per righe di Echelon.
Tocca per altri passaggi...
Passaggio 4.3.2.1
Perform the row operation to make the entry at a .
Tocca per altri passaggi...
Passaggio 4.3.2.1.1
Perform the row operation to make the entry at a .
Passaggio 4.3.2.1.2
Semplifica .
Passaggio 4.3.3
Use the result matrix to declare the final solution to the system of equations.
Passaggio 4.3.4
Write a solution vector by solving in terms of the free variables in each row.
Passaggio 4.3.5
Write the solution as a linear combination of vectors.
Passaggio 4.3.6
Write as a solution set.
Passaggio 4.3.7
The solution is the set of vectors created from the free variables of the system.
Passaggio 5
The eigenspace of is the list of the vector space for each eigenvalue.
Inserisci il TUO problema
Mathway richiede javascript e un browser aggiornato.