Matematica discreta Esempi
Passaggio 1
Per trovare il possibile numero di radici positive, guarda i segni dei coefficienti e conta il numero di volte in cui i coefficienti cambiano da positivo a negativo o viceversa.
Passaggio 2
Poiché ci sono cambiamenti di segno dal termine di ordine più alto a quello di ordine più basso, ci sono al massimo radici positive (Regola di Cartesio). È possibile trovare gli altri numeri possibili di radici positive sottraendo le coppie di radici (ad es. ).
Radici positive: o
Passaggio 3
Per trovare il possibile numero di radici negative, sostituisci con e ripeti il confronto dei segni.
Passaggio 4
Passaggio 4.1
Applica la regola del prodotto a .
Passaggio 4.2
Eleva alla potenza di .
Passaggio 4.3
Moltiplica per .
Passaggio 4.4
Applica la regola del prodotto a .
Passaggio 4.5
Eleva alla potenza di .
Passaggio 4.6
Moltiplica per .
Passaggio 4.7
Moltiplica per .
Passaggio 5
Poiché c'è cambiamento di segno dal termine di ordine più alto a quello di ordine più basso, c'è al massimo radice negativa (regola di Cartesio).
Radici negative:
Passaggio 6
Il numero di radici positive possibili è o e il numero di radici negative possibili è .
Radici positive: o
Radici negative: