Calcolo Esempi

,
Passaggio 1
Verifica se è continua.
Tocca per altri passaggi...
Passaggio 1.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Notazione degli intervalli:
Notazione intensiva:
Passaggio 1.2
è continua su .
La funzione è continua.
La funzione è continua.
Passaggio 2
Verifica se è differenziabile.
Tocca per altri passaggi...
Passaggio 2.1
Trova la derivata.
Tocca per altri passaggi...
Passaggio 2.1.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 2.1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 2.1.1.2
Calcola .
Tocca per altri passaggi...
Passaggio 2.1.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 2.1.1.2.3
Moltiplica per .
Passaggio 2.1.1.3
Differenzia usando la regola della costante.
Tocca per altri passaggi...
Passaggio 2.1.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 2.1.1.3.2
Somma e .
Passaggio 2.1.2
La derivata prima di rispetto a è .
Passaggio 2.2
Definisci se la derivata è continua su .
Tocca per altri passaggi...
Passaggio 2.2.1
Il dominio dell'espressione sono tutti i numeri reali tranne nei casi in cui l'espressione sia indefinita. In questo caso, non c'è alcun numero reale che rende l'espressione indefinita.
Notazione degli intervalli:
Notazione intensiva:
Passaggio 2.2.2
è continua su .
La funzione è continua.
La funzione è continua.
Passaggio 2.3
La funzione è differenziabile su perché la derivata è continua su .
La funzione è differenziabile.
La funzione è differenziabile.
Passaggio 3
Affinché la lunghezza dell'arco sia garantita, la funzione e la sua derivata devono essere entrambe continue sull'intervallo chiuso .
La funzione e la sua derivata sono continue sull'intervallo chiuso .
Passaggio 4
Trova la derivata di .
Tocca per altri passaggi...
Passaggio 4.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 4.2
Calcola .
Tocca per altri passaggi...
Passaggio 4.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 4.2.3
Moltiplica per .
Passaggio 4.3
Differenzia usando la regola della costante.
Tocca per altri passaggi...
Passaggio 4.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 4.3.2
Somma e .
Passaggio 5
Per calcolare la lunghezza dell'arco di una funzione, usa la formula .
Passaggio 6
Calcola l'integrale.
Tocca per altri passaggi...
Passaggio 6.1
Applica la regola costante.
Passaggio 6.2
Sostituisci e semplifica.
Tocca per altri passaggi...
Passaggio 6.2.1
Calcola per e per .
Passaggio 6.2.2
Semplifica.
Tocca per altri passaggi...
Passaggio 6.2.2.1
Sposta alla sinistra di .
Passaggio 6.2.2.2
Moltiplica per .
Passaggio 6.2.2.3
Sottrai da .
Passaggio 7
Il risultato può essere mostrato in più forme.
Forma esatta:
Forma decimale:
Passaggio 8
Inserisci il TUO problema
Mathway richiede javascript e un browser aggiornato.