Calcolo Esempi
Passaggio 1
Passaggio 1.1
Trova la derivata prima.
Passaggio 1.1.1
Differenzia.
Passaggio 1.1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.1.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2
Calcola .
Passaggio 1.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2.3
Moltiplica per .
Passaggio 1.1.3
Calcola .
Passaggio 1.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.3.3
Moltiplica per .
Passaggio 1.2
La derivata prima di rispetto a è .
Passaggio 2
Passaggio 2.1
Poni la derivata prima uguale a .
Passaggio 2.2
Scomponi il primo membro dell'equazione.
Passaggio 2.2.1
Scomponi da .
Passaggio 2.2.1.1
Scomponi da .
Passaggio 2.2.1.2
Scomponi da .
Passaggio 2.2.1.3
Scomponi da .
Passaggio 2.2.1.4
Scomponi da .
Passaggio 2.2.1.5
Scomponi da .
Passaggio 2.2.2
Scomponi.
Passaggio 2.2.2.1
Scomponi usando il teorema delle radici razionali.
Passaggio 2.2.2.1.1
Se una funzione polinomiale ha coefficienti interi, allora ogni zero razionale avrà la forma , dove è un fattore della costante e è un fattore del coefficiente direttivo.
Passaggio 2.2.2.1.2
Trova ciascuna combinazione di . Si tratta delle radici possibili della funzione polinomica.
Passaggio 2.2.2.1.3
Sostituisci e semplifica l'espressione. In questo caso, l'espressione è uguale a quindi è una radice del polinomio.
Passaggio 2.2.2.1.3.1
Sostituisci nel polinomio.
Passaggio 2.2.2.1.3.2
Eleva alla potenza di .
Passaggio 2.2.2.1.3.3
Somma e .
Passaggio 2.2.2.1.3.4
Sottrai da .
Passaggio 2.2.2.1.4
Poiché è una radice nota, dividi il polinomio per per trovare il polinomio quoziente. Questo polinomio può poi essere usato per trovare le radici rimanenti.
Passaggio 2.2.2.1.5
Dividi per .
Passaggio 2.2.2.1.5.1
Imposta i polinomi da dividere. Se non c'è un termine per ogni esponente, inseriscine uno con un valore di .
- | + | + | - |
Passaggio 2.2.2.1.5.2
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
- | + | + | - |
Passaggio 2.2.2.1.5.3
Moltiplica il nuovo quoziente per il divisore.
- | + | + | - | ||||||||
+ | - |
Passaggio 2.2.2.1.5.4
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
- | + | + | - | ||||||||
- | + |
Passaggio 2.2.2.1.5.5
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
- | + | + | - | ||||||||
- | + | ||||||||||
+ |
Passaggio 2.2.2.1.5.6
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + |
Passaggio 2.2.2.1.5.7
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
+ | |||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + |
Passaggio 2.2.2.1.5.8
Moltiplica il nuovo quoziente per il divisore.
+ | |||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | - |
Passaggio 2.2.2.1.5.9
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
+ | |||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + |
Passaggio 2.2.2.1.5.10
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
+ | |||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ |
Passaggio 2.2.2.1.5.11
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
+ | |||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - |
Passaggio 2.2.2.1.5.12
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
+ | + | ||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - |
Passaggio 2.2.2.1.5.13
Moltiplica il nuovo quoziente per il divisore.
+ | + | ||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
+ | - |
Passaggio 2.2.2.1.5.14
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
+ | + | ||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + |
Passaggio 2.2.2.1.5.15
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
+ | + | ||||||||||
- | + | + | - | ||||||||
- | + | ||||||||||
+ | + | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
Passaggio 2.2.2.1.5.16
Poiché il resto è , la risposta finale è il quoziente.
Passaggio 2.2.2.1.6
Scrivi come insieme di fattori.
Passaggio 2.2.2.2
Rimuovi le parentesi non necessarie.
Passaggio 2.3
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 2.4
Imposta uguale a e risolvi per .
Passaggio 2.4.1
Imposta uguale a .
Passaggio 2.4.2
Somma a entrambi i lati dell'equazione.
Passaggio 2.5
Imposta uguale a e risolvi per .
Passaggio 2.5.1
Imposta uguale a .
Passaggio 2.5.2
Risolvi per .
Passaggio 2.5.2.1
Usa la formula quadratica per trovare le soluzioni.
Passaggio 2.5.2.2
Sostituisci i valori , e nella formula quadratica e risolvi per .
Passaggio 2.5.2.3
Semplifica.
Passaggio 2.5.2.3.1
Semplifica il numeratore.
Passaggio 2.5.2.3.1.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 2.5.2.3.1.2
Moltiplica .
Passaggio 2.5.2.3.1.2.1
Moltiplica per .
Passaggio 2.5.2.3.1.2.2
Moltiplica per .
Passaggio 2.5.2.3.1.3
Sottrai da .
Passaggio 2.5.2.3.1.4
Riscrivi come .
Passaggio 2.5.2.3.1.5
Riscrivi come .
Passaggio 2.5.2.3.1.6
Riscrivi come .
Passaggio 2.5.2.3.2
Moltiplica per .
Passaggio 2.5.2.4
Semplifica l'espressione per risolvere per la porzione di .
Passaggio 2.5.2.4.1
Semplifica il numeratore.
Passaggio 2.5.2.4.1.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 2.5.2.4.1.2
Moltiplica .
Passaggio 2.5.2.4.1.2.1
Moltiplica per .
Passaggio 2.5.2.4.1.2.2
Moltiplica per .
Passaggio 2.5.2.4.1.3
Sottrai da .
Passaggio 2.5.2.4.1.4
Riscrivi come .
Passaggio 2.5.2.4.1.5
Riscrivi come .
Passaggio 2.5.2.4.1.6
Riscrivi come .
Passaggio 2.5.2.4.2
Moltiplica per .
Passaggio 2.5.2.4.3
Cambia da a .
Passaggio 2.5.2.4.4
Riscrivi come .
Passaggio 2.5.2.4.5
Scomponi da .
Passaggio 2.5.2.4.6
Scomponi da .
Passaggio 2.5.2.4.7
Sposta il negativo davanti alla frazione.
Passaggio 2.5.2.5
Semplifica l'espressione per risolvere per la porzione di .
Passaggio 2.5.2.5.1
Semplifica il numeratore.
Passaggio 2.5.2.5.1.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 2.5.2.5.1.2
Moltiplica .
Passaggio 2.5.2.5.1.2.1
Moltiplica per .
Passaggio 2.5.2.5.1.2.2
Moltiplica per .
Passaggio 2.5.2.5.1.3
Sottrai da .
Passaggio 2.5.2.5.1.4
Riscrivi come .
Passaggio 2.5.2.5.1.5
Riscrivi come .
Passaggio 2.5.2.5.1.6
Riscrivi come .
Passaggio 2.5.2.5.2
Moltiplica per .
Passaggio 2.5.2.5.3
Cambia da a .
Passaggio 2.5.2.5.4
Riscrivi come .
Passaggio 2.5.2.5.5
Scomponi da .
Passaggio 2.5.2.5.6
Scomponi da .
Passaggio 2.5.2.5.7
Sposta il negativo davanti alla frazione.
Passaggio 2.5.2.6
La risposta finale è la combinazione di entrambe le soluzioni.
Passaggio 2.6
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 3
I valori che rendono la derivata uguale a sono .
Passaggio 4
Dopo aver trovato il punto che rende la derivata uguale a o indefinita, l'intervallo per verificare dove è crescente e dove è decrescente corrisponde a .
Passaggio 5
Passaggio 5.1
Sostituisci la variabile con nell'espressione.
Passaggio 5.2
Semplifica il risultato.
Passaggio 5.2.1
Semplifica ciascun termine.
Passaggio 5.2.1.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 5.2.1.2
Moltiplica per .
Passaggio 5.2.1.3
Moltiplica per .
Passaggio 5.2.2
Semplifica aggiungendo e sottraendo.
Passaggio 5.2.2.1
Somma e .
Passaggio 5.2.2.2
Sottrai da .
Passaggio 5.2.3
La risposta finale è .
Passaggio 5.3
In corrispondenza di la derivata è . Poiché il valore è negativo, la funzione è decrescente su .
Decrescente su perché
Decrescente su perché
Passaggio 6
Passaggio 6.1
Sostituisci la variabile con nell'espressione.
Passaggio 6.2
Semplifica il risultato.
Passaggio 6.2.1
Semplifica ciascun termine.
Passaggio 6.2.1.1
Eleva alla potenza di .
Passaggio 6.2.1.2
Moltiplica per .
Passaggio 6.2.1.3
Moltiplica per .
Passaggio 6.2.2
Semplifica aggiungendo e sottraendo.
Passaggio 6.2.2.1
Somma e .
Passaggio 6.2.2.2
Sottrai da .
Passaggio 6.2.3
La risposta finale è .
Passaggio 6.3
In corrispondenza di la derivata è . Poiché il valore è positivo, la funzione è crescente su .
Crescente su perché
Crescente su perché
Passaggio 7
Elenca gli intervalli in cui la funzione è crescente e decrescente.
Crescente su:
Decrescente su:
Passaggio 8