Calcolo Esempi

Trova dove è crescente/decrescente usando le derivate
Passaggio 1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1
Trova la derivata prima.
Tocca per altri passaggi...
Passaggio 1.1.1
Differenzia.
Tocca per altri passaggi...
Passaggio 1.1.1.1
Secondo la regola della somma, la derivata di rispetto a è .
Passaggio 1.1.1.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2
Calcola .
Tocca per altri passaggi...
Passaggio 1.1.2.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.2.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.2.3
Moltiplica per .
Passaggio 1.1.3
Calcola .
Tocca per altri passaggi...
Passaggio 1.1.3.1
Poiché è costante rispetto a , la derivata di rispetto a è .
Passaggio 1.1.3.2
Differenzia usando la regola della potenza secondo cui è dove .
Passaggio 1.1.3.3
Moltiplica per .
Passaggio 1.2
La derivata prima di rispetto a è .
Passaggio 2
Poni la derivata prima uguale a quindi risolvi l'equazione .
Tocca per altri passaggi...
Passaggio 2.1
Poni la derivata prima uguale a .
Passaggio 2.2
Scomponi il primo membro dell'equazione.
Tocca per altri passaggi...
Passaggio 2.2.1
Scomponi da .
Tocca per altri passaggi...
Passaggio 2.2.1.1
Scomponi da .
Passaggio 2.2.1.2
Scomponi da .
Passaggio 2.2.1.3
Scomponi da .
Passaggio 2.2.1.4
Scomponi da .
Passaggio 2.2.1.5
Scomponi da .
Passaggio 2.2.2
Scomponi.
Tocca per altri passaggi...
Passaggio 2.2.2.1
Scomponi usando il teorema delle radici razionali.
Tocca per altri passaggi...
Passaggio 2.2.2.1.1
Se una funzione polinomiale ha coefficienti interi, allora ogni zero razionale avrà la forma , dove è un fattore della costante e è un fattore del coefficiente direttivo.
Passaggio 2.2.2.1.2
Trova ciascuna combinazione di . Si tratta delle radici possibili della funzione polinomica.
Passaggio 2.2.2.1.3
Sostituisci e semplifica l'espressione. In questo caso, l'espressione è uguale a quindi è una radice del polinomio.
Tocca per altri passaggi...
Passaggio 2.2.2.1.3.1
Sostituisci nel polinomio.
Passaggio 2.2.2.1.3.2
Eleva alla potenza di .
Passaggio 2.2.2.1.3.3
Somma e .
Passaggio 2.2.2.1.3.4
Sottrai da .
Passaggio 2.2.2.1.4
Poiché è una radice nota, dividi il polinomio per per trovare il polinomio quoziente. Questo polinomio può poi essere usato per trovare le radici rimanenti.
Passaggio 2.2.2.1.5
Dividi per .
Tocca per altri passaggi...
Passaggio 2.2.2.1.5.1
Imposta i polinomi da dividere. Se non c'è un termine per ogni esponente, inseriscine uno con un valore di .
-++-
Passaggio 2.2.2.1.5.2
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
-++-
Passaggio 2.2.2.1.5.3
Moltiplica il nuovo quoziente per il divisore.
-++-
+-
Passaggio 2.2.2.1.5.4
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
-++-
-+
Passaggio 2.2.2.1.5.5
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
-++-
-+
+
Passaggio 2.2.2.1.5.6
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
-++-
-+
++
Passaggio 2.2.2.1.5.7
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
+
-++-
-+
++
Passaggio 2.2.2.1.5.8
Moltiplica il nuovo quoziente per il divisore.
+
-++-
-+
++
+-
Passaggio 2.2.2.1.5.9
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
+
-++-
-+
++
-+
Passaggio 2.2.2.1.5.10
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
+
-++-
-+
++
-+
+
Passaggio 2.2.2.1.5.11
Abbassa i termini successivi dal dividendo originale nel dividendo attuale.
+
-++-
-+
++
-+
+-
Passaggio 2.2.2.1.5.12
Dividi il termine di ordine più alto nel dividendo per il termine di ordine più alto nel divisore .
++
-++-
-+
++
-+
+-
Passaggio 2.2.2.1.5.13
Moltiplica il nuovo quoziente per il divisore.
++
-++-
-+
++
-+
+-
+-
Passaggio 2.2.2.1.5.14
L'espressione deve essere sottratta dal dividendo; quindi, cambia tutti i segni in
++
-++-
-+
++
-+
+-
-+
Passaggio 2.2.2.1.5.15
Dopo aver cambiato i segni, somma l'ultimo dividendo del polinomio moltiplicato per trovare il nuovo dividendo.
++
-++-
-+
++
-+
+-
-+
Passaggio 2.2.2.1.5.16
Poiché il resto è , la risposta finale è il quoziente.
Passaggio 2.2.2.1.6
Scrivi come insieme di fattori.
Passaggio 2.2.2.2
Rimuovi le parentesi non necessarie.
Passaggio 2.3
Se qualsiasi singolo fattore nel lato sinistro dell'equazione è uguale a , l'intera espressione sarà uguale a .
Passaggio 2.4
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 2.4.1
Imposta uguale a .
Passaggio 2.4.2
Somma a entrambi i lati dell'equazione.
Passaggio 2.5
Imposta uguale a e risolvi per .
Tocca per altri passaggi...
Passaggio 2.5.1
Imposta uguale a .
Passaggio 2.5.2
Risolvi per .
Tocca per altri passaggi...
Passaggio 2.5.2.1
Usa la formula quadratica per trovare le soluzioni.
Passaggio 2.5.2.2
Sostituisci i valori , e nella formula quadratica e risolvi per .
Passaggio 2.5.2.3
Semplifica.
Tocca per altri passaggi...
Passaggio 2.5.2.3.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 2.5.2.3.1.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 2.5.2.3.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 2.5.2.3.1.2.1
Moltiplica per .
Passaggio 2.5.2.3.1.2.2
Moltiplica per .
Passaggio 2.5.2.3.1.3
Sottrai da .
Passaggio 2.5.2.3.1.4
Riscrivi come .
Passaggio 2.5.2.3.1.5
Riscrivi come .
Passaggio 2.5.2.3.1.6
Riscrivi come .
Passaggio 2.5.2.3.2
Moltiplica per .
Passaggio 2.5.2.4
Semplifica l'espressione per risolvere per la porzione di .
Tocca per altri passaggi...
Passaggio 2.5.2.4.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 2.5.2.4.1.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 2.5.2.4.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 2.5.2.4.1.2.1
Moltiplica per .
Passaggio 2.5.2.4.1.2.2
Moltiplica per .
Passaggio 2.5.2.4.1.3
Sottrai da .
Passaggio 2.5.2.4.1.4
Riscrivi come .
Passaggio 2.5.2.4.1.5
Riscrivi come .
Passaggio 2.5.2.4.1.6
Riscrivi come .
Passaggio 2.5.2.4.2
Moltiplica per .
Passaggio 2.5.2.4.3
Cambia da a .
Passaggio 2.5.2.4.4
Riscrivi come .
Passaggio 2.5.2.4.5
Scomponi da .
Passaggio 2.5.2.4.6
Scomponi da .
Passaggio 2.5.2.4.7
Sposta il negativo davanti alla frazione.
Passaggio 2.5.2.5
Semplifica l'espressione per risolvere per la porzione di .
Tocca per altri passaggi...
Passaggio 2.5.2.5.1
Semplifica il numeratore.
Tocca per altri passaggi...
Passaggio 2.5.2.5.1.1
Uno elevato a qualsiasi potenza è uno.
Passaggio 2.5.2.5.1.2
Moltiplica .
Tocca per altri passaggi...
Passaggio 2.5.2.5.1.2.1
Moltiplica per .
Passaggio 2.5.2.5.1.2.2
Moltiplica per .
Passaggio 2.5.2.5.1.3
Sottrai da .
Passaggio 2.5.2.5.1.4
Riscrivi come .
Passaggio 2.5.2.5.1.5
Riscrivi come .
Passaggio 2.5.2.5.1.6
Riscrivi come .
Passaggio 2.5.2.5.2
Moltiplica per .
Passaggio 2.5.2.5.3
Cambia da a .
Passaggio 2.5.2.5.4
Riscrivi come .
Passaggio 2.5.2.5.5
Scomponi da .
Passaggio 2.5.2.5.6
Scomponi da .
Passaggio 2.5.2.5.7
Sposta il negativo davanti alla frazione.
Passaggio 2.5.2.6
La risposta finale è la combinazione di entrambe le soluzioni.
Passaggio 2.6
La soluzione finale è data da tutti i valori che rendono vera.
Passaggio 3
I valori che rendono la derivata uguale a sono .
Passaggio 4
Dopo aver trovato il punto che rende la derivata uguale a o indefinita, l'intervallo per verificare dove è crescente e dove è decrescente corrisponde a .
Passaggio 5
Sostituisci un valore dell'intervallo nella derivata per determinare se la funzione è crescente o decrescente.
Tocca per altri passaggi...
Passaggio 5.1
Sostituisci la variabile con nell'espressione.
Passaggio 5.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 5.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 5.2.1.1
Elevando a qualsiasi potenza positiva si ottiene .
Passaggio 5.2.1.2
Moltiplica per .
Passaggio 5.2.1.3
Moltiplica per .
Passaggio 5.2.2
Semplifica aggiungendo e sottraendo.
Tocca per altri passaggi...
Passaggio 5.2.2.1
Somma e .
Passaggio 5.2.2.2
Sottrai da .
Passaggio 5.2.3
La risposta finale è .
Passaggio 5.3
In corrispondenza di la derivata è . Poiché il valore è negativo, la funzione è decrescente su .
Decrescente su perché
Decrescente su perché
Passaggio 6
Sostituisci un valore dell'intervallo nella derivata per determinare se la funzione è crescente o decrescente.
Tocca per altri passaggi...
Passaggio 6.1
Sostituisci la variabile con nell'espressione.
Passaggio 6.2
Semplifica il risultato.
Tocca per altri passaggi...
Passaggio 6.2.1
Semplifica ciascun termine.
Tocca per altri passaggi...
Passaggio 6.2.1.1
Eleva alla potenza di .
Passaggio 6.2.1.2
Moltiplica per .
Passaggio 6.2.1.3
Moltiplica per .
Passaggio 6.2.2
Semplifica aggiungendo e sottraendo.
Tocca per altri passaggi...
Passaggio 6.2.2.1
Somma e .
Passaggio 6.2.2.2
Sottrai da .
Passaggio 6.2.3
La risposta finale è .
Passaggio 6.3
In corrispondenza di la derivata è . Poiché il valore è positivo, la funzione è crescente su .
Crescente su perché
Crescente su perché
Passaggio 7
Elenca gli intervalli in cui la funzione è crescente e decrescente.
Crescente su:
Decrescente su:
Passaggio 8
Inserisci il TUO problema
Mathway richiede javascript e un browser aggiornato.