Prakalkulus Contoh

Konversi menjadi Notasi Interval x^3+4x^2>=4x+16
Langkah 1
Kurangkan pada kedua sisi pertidaksamaan tersebut.
Langkah 2
Konversikan pertidaksamaan ke persamaan.
Langkah 3
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 4
Faktorkan sisi kiri persamaannya.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Faktorkan faktor persekutuan terbesar dari setiap kelompok.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1
Kelompokkan dua suku pertama dan dua suku terakhir.
Langkah 4.1.2
Faktorkan faktor persekutuan terbesar (FPB) dari setiap kelompok.
Langkah 4.2
Faktorkan polinomial dengan memfaktorkan faktor persekutuan terbesar, .
Langkah 4.3
Tulis kembali sebagai .
Langkah 4.4
Faktorkan.
Ketuk untuk lebih banyak langkah...
Langkah 4.4.1
Karena kedua suku merupakan kuadrat sempurna, faktorkan menggunakan rumus beda pangkat dua, di mana dan .
Langkah 4.4.2
Hilangkan tanda kurung yang tidak perlu.
Langkah 5
Jika faktor individu di sisi kiri persamaan sama dengan , seluruh pernyataan akan menjadi sama dengan .
Langkah 6
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Atur sama dengan .
Langkah 6.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 7
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Atur sama dengan .
Langkah 7.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 8
Atur agar sama dengan dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Atur sama dengan .
Langkah 8.2
Tambahkan ke kedua sisi persamaan.
Langkah 9
Penyelesaian akhirnya adalah semua nilai yang membuat benar.
Langkah 10
Gunakan masing-masing akar untuk membuat interval pengujian.
Langkah 11
Pilih nilai uji dari masing-masing interval dan masukkan nilai ini ke dalam pertidaksamaan asal untuk menentukan interval mana yang memenuhi pertidaksamaan.
Ketuk untuk lebih banyak langkah...
Langkah 11.1
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Ketuk untuk lebih banyak langkah...
Langkah 11.1.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 11.1.2
Ganti dengan pada pertidaksamaan asal.
Langkah 11.1.3
Sisi kiri lebih kecil dari sisi kanan , yang berarti pernyataan yang diberikan salah.
False
False
Langkah 11.2
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Ketuk untuk lebih banyak langkah...
Langkah 11.2.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 11.2.2
Ganti dengan pada pertidaksamaan asal.
Langkah 11.2.3
Sisi kiri lebih besar dari sisi kanan , yang berarti pernyataan yang diberikan selalu benar.
True
True
Langkah 11.3
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Ketuk untuk lebih banyak langkah...
Langkah 11.3.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 11.3.2
Ganti dengan pada pertidaksamaan asal.
Langkah 11.3.3
Sisi kiri lebih kecil dari sisi kanan , yang berarti pernyataan yang diberikan salah.
False
False
Langkah 11.4
Uji nilai pada interval untuk melihat apakah nilai ini membuat pertidaksamaan bernilai benar.
Ketuk untuk lebih banyak langkah...
Langkah 11.4.1
Pilih nilai pada interval dan lihat apakah nilai ini membuat pertidaksamaan asal bernilai benar.
Langkah 11.4.2
Ganti dengan pada pertidaksamaan asal.
Langkah 11.4.3
Sisi kiri lebih besar dari sisi kanan , yang berarti pernyataan yang diberikan selalu benar.
True
True
Langkah 11.5
Bandingkan interval untuk menentukan mana yang memenuhi pertidaksamaan asal.
Salah
Benar
Salah
Benar
Salah
Benar
Salah
Benar
Langkah 12
Penyelesaian tersebut terdiri dari semua interval hakiki.
atau
Langkah 13
Konversikan pertidaksamaan ke notasi interval.
Langkah 14