Masukkan soal...
Prakalkulus Contoh
Langkah 1
Langkah 1.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.3
Tulis setiap pernyataan menggunakan penyebut umum dari , dengan mengalikan masing-masing pembilang dan penyebut dengan faktor dari yang sesuai.
Langkah 1.3.1
Kalikan dengan .
Langkah 1.3.2
Kalikan dengan .
Langkah 1.3.3
Susun kembali faktor-faktor dari .
Langkah 1.4
Gabungkan pembilang dari penyebut persekutuan.
Langkah 2
Langkah 2.1
Sederhanakan penjelasan limitnya.
Langkah 2.1.1
Kalikan pembilang dengan balikan dari penyebut.
Langkah 2.1.2
Kalikan dengan .
Langkah 2.2
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 3
Langkah 3.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Langkah 3.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 3.1.2
Evaluasi limit-limit dengan memasukkan ke semua munculnya (Variabel1).
Langkah 3.1.2.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 3.1.2.2
Sederhanakan setiap suku.
Langkah 3.1.2.2.1
Tambahkan dan .
Langkah 3.1.2.2.2
Kalikan dengan .
Langkah 3.1.2.3
Kurangi dengan .
Langkah 3.1.3
Evaluasi limit dari penyebutnya.
Langkah 3.1.3.1
Pisahkan limitnya menggunakan Kaidah Hasil Kali Limit pada limit ketika mendekati .
Langkah 3.1.3.2
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 3.1.3.3
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 3.1.3.4
Evaluasi limit-limit dengan memasukkan ke semua munculnya (Variabel1).
Langkah 3.1.3.4.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 3.1.3.4.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 3.1.3.5
Sederhanakan jawabannya.
Langkah 3.1.3.5.1
Tambahkan dan .
Langkah 3.1.3.5.2
Kalikan dengan .
Langkah 3.1.3.5.3
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 3.1.3.6
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 3.1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 3.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 3.3
Menentukan turunan dari pembilang dan penyebut.
Langkah 3.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 3.3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 3.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.4
Evaluasi .
Langkah 3.3.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.4.2
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 3.3.4.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.4.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.4.5
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.3.4.6
Kalikan dengan .
Langkah 3.3.4.7
Kurangi dengan .
Langkah 3.3.4.8
Kalikan dengan .
Langkah 3.3.5
Tambahkan dan .
Langkah 3.3.6
Diferensialkan menggunakan Kaidah Hasil Kali yang menyatakan bahwa adalah di mana dan .
Langkah 3.3.7
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.3.8
Kalikan dengan .
Langkah 3.3.9
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 3.3.10
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.11
Tambahkan dan .
Langkah 3.3.12
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.13
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.3.14
Kalikan dengan .
Langkah 3.3.15
Pindahkan ke sebelah kiri .
Langkah 3.3.16
Tulis kembali sebagai .
Langkah 3.3.17
Kurangi dengan .
Langkah 3.3.18
Susun kembali suku-suku.
Langkah 4
Langkah 4.1
Pisahkan limitnya menggunakan Kaidah Hasil Bagi Limit pada limitnya ketika mendekati .
Langkah 4.2
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 4.3
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 4.4
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 4.5
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 5
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 6
Langkah 6.1
Sederhanakan penyebutnya.
Langkah 6.1.1
Kalikan dengan .
Langkah 6.1.2
Tambahkan dan .
Langkah 6.2
Kalikan .
Langkah 6.2.1
Kalikan dengan .
Langkah 6.2.2
Kalikan dengan .
Langkah 7
Hasilnya dapat ditampilkan dalam beberapa bentuk.
Bentuk Eksak:
Bentuk Desimal: