Masukkan soal...
Prakalkulus Contoh
Langkah 1
Langkah 1.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Langkah 1.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 1.1.2
Evaluasi limit dari pembilangnya.
Langkah 1.1.2.1
Evaluasi limitnya.
Langkah 1.1.2.1.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.1.2.1.2
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 1.1.2.1.3
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 1.1.2.1.4
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.1.2.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.2.3
Sederhanakan jawabannya.
Langkah 1.1.2.3.1
Sederhanakan setiap suku.
Langkah 1.1.2.3.1.1
Terapkan kaidah hasil kali ke .
Langkah 1.1.2.3.1.2
Satu dipangkat berapa pun sama dengan satu.
Langkah 1.1.2.3.1.3
Naikkan menjadi pangkat .
Langkah 1.1.2.3.1.4
Batalkan faktor persekutuan dari .
Langkah 1.1.2.3.1.4.1
Batalkan faktor persekutuan.
Langkah 1.1.2.3.1.4.2
Tulis kembali pernyataannya.
Langkah 1.1.2.3.1.5
Kalikan dengan .
Langkah 1.1.2.3.2
Kurangi dengan .
Langkah 1.1.3
Evaluasi limit dari penyebutnya.
Langkah 1.1.3.1
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 1.1.3.2
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 1.1.3.3
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 1.1.3.4
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 1.1.3.5
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 1.1.3.6
Evaluasi limit-limit dengan memasukkan ke semua munculnya (Variabel1).
Langkah 1.1.3.6.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.3.6.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 1.1.3.7
Sederhanakan jawabannya.
Langkah 1.1.3.7.1
Sederhanakan setiap suku.
Langkah 1.1.3.7.1.1
Terapkan kaidah hasil kali ke .
Langkah 1.1.3.7.1.2
Satu dipangkat berapa pun sama dengan satu.
Langkah 1.1.3.7.1.3
Naikkan menjadi pangkat .
Langkah 1.1.3.7.1.4
Batalkan faktor persekutuan dari .
Langkah 1.1.3.7.1.4.1
Faktorkan dari .
Langkah 1.1.3.7.1.4.2
Faktorkan dari .
Langkah 1.1.3.7.1.4.3
Batalkan faktor persekutuan.
Langkah 1.1.3.7.1.4.4
Tulis kembali pernyataannya.
Langkah 1.1.3.7.1.5
Gabungkan dan .
Langkah 1.1.3.7.1.6
Gabungkan dan .
Langkah 1.1.3.7.1.7
Pindahkan tanda negatif di depan pecahan.
Langkah 1.1.3.7.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 1.1.3.7.3
Kurangi dengan .
Langkah 1.1.3.7.4
Bagilah dengan .
Langkah 1.1.3.7.5
Kurangi dengan .
Langkah 1.1.3.7.6
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.1.3.8
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 1.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 1.3
Menentukan turunan dari pembilang dan penyebut.
Langkah 1.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 1.3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.3.3
Evaluasi .
Langkah 1.3.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.3.3
Kalikan dengan .
Langkah 1.3.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.5
Tambahkan dan .
Langkah 1.3.6
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.3.7
Evaluasi .
Langkah 1.3.7.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.7.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.7.3
Kalikan dengan .
Langkah 1.3.8
Evaluasi .
Langkah 1.3.8.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.8.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.8.3
Kalikan dengan .
Langkah 1.3.9
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.10
Tambahkan dan .
Langkah 2
Langkah 2.1
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 2.2
Pisahkan limitnya menggunakan Kaidah Hasil Bagi Limit pada limitnya ketika mendekati .
Langkah 2.3
Pindahkan pangkat dari di luar limit menggunakan Kaidah Pangkat Limit.
Langkah 2.4
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 2.5
Pindahkan suku ke luar limit karena konstan terhadap .
Langkah 2.6
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 3
Langkah 3.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 3.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 4
Langkah 4.1
Sederhanakan pembilangnya.
Langkah 4.1.1
Terapkan kaidah hasil kali ke .
Langkah 4.1.2
Satu dipangkat berapa pun sama dengan satu.
Langkah 4.1.3
Naikkan menjadi pangkat .
Langkah 4.2
Sederhanakan penyebutnya.
Langkah 4.2.1
Batalkan faktor persekutuan dari .
Langkah 4.2.1.1
Faktorkan dari .
Langkah 4.2.1.2
Batalkan faktor persekutuan.
Langkah 4.2.1.3
Tulis kembali pernyataannya.
Langkah 4.2.2
Kalikan dengan .
Langkah 4.2.3
Kurangi dengan .
Langkah 4.3
Bagilah dengan .
Langkah 4.4
Batalkan faktor persekutuan dari .
Langkah 4.4.1
Faktorkan dari .
Langkah 4.4.2
Batalkan faktor persekutuan.
Langkah 4.4.3
Tulis kembali pernyataannya.