Masukkan soal...
Prakalkulus Contoh
Langkah 1
Tulis kembali persamaan tersebut sebagai .
Langkah 2
Kalikan kedua sisi persamaan dengan .
Langkah 3
Langkah 3.1
Sederhanakan .
Langkah 3.1.1
Gabungkan dan .
Langkah 3.1.2
Batalkan faktor persekutuan dari .
Langkah 3.1.2.1
Pindahkan negatif pertama pada ke dalam pembilangnya.
Langkah 3.1.2.2
Faktorkan dari .
Langkah 3.1.2.3
Batalkan faktor persekutuan.
Langkah 3.1.2.4
Tulis kembali pernyataannya.
Langkah 3.1.3
Kalikan.
Langkah 3.1.3.1
Kalikan dengan .
Langkah 3.1.3.2
Kalikan dengan .
Langkah 4
Langkah 4.1
Tulis kembali persamaan dalam bentuk verteks.
Langkah 4.1.1
Selesaikan kuadrat dari .
Langkah 4.1.1.1
Gunakan bentuk , untuk menemukan nilai dari , , dan .
Langkah 4.1.1.2
Mempertimbangkan bentuk verteks parabola.
Langkah 4.1.1.3
Temukan nilai dari menggunakan rumus .
Langkah 4.1.1.3.1
Substitusikan nilai-nilai dari dan ke dalam rumus .
Langkah 4.1.1.3.2
Sederhanakan sisi kanannya.
Langkah 4.1.1.3.2.1
Hapus faktor persekutuan dari dan .
Langkah 4.1.1.3.2.1.1
Faktorkan dari .
Langkah 4.1.1.3.2.1.2
Batalkan faktor persekutuan.
Langkah 4.1.1.3.2.1.2.1
Faktorkan dari .
Langkah 4.1.1.3.2.1.2.2
Batalkan faktor persekutuan.
Langkah 4.1.1.3.2.1.2.3
Tulis kembali pernyataannya.
Langkah 4.1.1.3.2.2
Hapus faktor persekutuan dari dan .
Langkah 4.1.1.3.2.2.1
Faktorkan dari .
Langkah 4.1.1.3.2.2.2
Pindahkan tanda negatif dari penyebut .
Langkah 4.1.1.3.2.3
Tulis kembali sebagai .
Langkah 4.1.1.3.2.4
Kalikan dengan .
Langkah 4.1.1.4
Temukan nilai dari menggunakan rumus .
Langkah 4.1.1.4.1
Substitusikan nilai-nilai dari , , dan ke dalam rumus .
Langkah 4.1.1.4.2
Sederhanakan sisi kanannya.
Langkah 4.1.1.4.2.1
Sederhanakan setiap suku.
Langkah 4.1.1.4.2.1.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 4.1.1.4.2.1.2
Kalikan dengan .
Langkah 4.1.1.4.2.1.3
Bagilah dengan .
Langkah 4.1.1.4.2.1.4
Kalikan dengan .
Langkah 4.1.1.4.2.2
Tambahkan dan .
Langkah 4.1.1.5
Substitusikan nilai-nilai dari , , dan ke dalam bentuk verteks .
Langkah 4.1.2
Aturlah sama dengan sisi kanan yang baru.
Langkah 4.2
Gunakan bentuk directrix, , untuk menentukan nilai dari , , dan .
Langkah 4.3
Karena nilai dari negatif, parabolanya membuka ke kiri.
Membuka ke Kiri
Langkah 4.4
Tentukan verteks .
Langkah 4.5
Temukan , jarak dari verteks ke fokus.
Langkah 4.5.1
Hitung jarak dari puncak ke fokus parabola menggunakan rumus berikut.
Langkah 4.5.2
Substitusikan nilai ke dalam rumusnya.
Langkah 4.5.3
Sederhanakan.
Langkah 4.5.3.1
Kalikan dengan .
Langkah 4.5.3.2
Pindahkan tanda negatif di depan pecahan.
Langkah 4.6
Tentukan fokusnya.
Langkah 4.6.1
Titik fokus parabola dapat ditentukan dengan menambahkan ke koordinat x jika parabola membuka ke kiri atau ke kanan.
Langkah 4.6.2
Substitusikan nilai-nilai , , dan yang diketahui ke dalam rumusnya, lalu sederhanakan.
Langkah 4.7
Tentukan sumbu simetri dengan menemukan garis yang melewati verteks dan titik fokus.
Langkah 4.8
Tentukan direktriksnya.
Langkah 4.8.1
Garis arah parabola adalah garis tegak yang diperoleh dengan mengurangi dari koordinat x dari verteks jika parabola membuka ke kiri atau ke kanan.
Langkah 4.8.2
Substitusikan nilai-nilai dan yang diketahui ke dalam rumusnya, lalu sederhanakan.
Langkah 4.9
Gunakan sifat-sifat parabola untuk menganalisis dan gambarkan parabolanya.
Arah: Membuka ke Kiri
Verteks:
Fokus:
Sumbu Simetri:
Direktriks:
Arah: Membuka ke Kiri
Verteks:
Fokus:
Sumbu Simetri:
Direktriks:
Langkah 5
Langkah 5.1
Substitusikan nilai ke dalam . Dalam hal ini, titiknya adalah .
Langkah 5.1.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 5.1.2
Sederhanakan hasilnya.
Langkah 5.1.2.1
Kalikan dengan .
Langkah 5.1.2.2
Jawaban akhirnya adalah .
Langkah 5.1.3
Konversikan ke desimal.
Langkah 5.2
Substitusikan nilai ke dalam . Dalam hal ini, titiknya adalah .
Langkah 5.2.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 5.2.2
Sederhanakan hasilnya.
Langkah 5.2.2.1
Kalikan dengan .
Langkah 5.2.2.2
Jawaban akhirnya adalah .
Langkah 5.2.3
Konversikan ke desimal.
Langkah 5.3
Substitusikan nilai ke dalam . Dalam hal ini, titiknya adalah .
Langkah 5.3.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 5.3.2
Sederhanakan hasilnya.
Langkah 5.3.2.1
Sederhanakan pembilangnya.
Langkah 5.3.2.1.1
Kalikan dengan .
Langkah 5.3.2.1.2
Sebarang akar dari adalah .
Langkah 5.3.2.2
Jawaban akhirnya adalah .
Langkah 5.3.3
Konversikan ke desimal.
Langkah 5.4
Substitusikan nilai ke dalam . Dalam hal ini, titiknya adalah .
Langkah 5.4.1
Ganti variabel dengan pada pernyataan tersebut.
Langkah 5.4.2
Sederhanakan hasilnya.
Langkah 5.4.2.1
Sederhanakan pembilangnya.
Langkah 5.4.2.1.1
Kalikan dengan .
Langkah 5.4.2.1.2
Sebarang akar dari adalah .
Langkah 5.4.2.2
Jawaban akhirnya adalah .
Langkah 5.4.3
Konversikan ke desimal.
Langkah 5.5
Gambar grafik parabola menggunakan sifat dan beberapa titik yang dipilih.
Langkah 6
Gambar grafik parabola menggunakan sifat dan beberapa titik yang dipilih.
Arah: Membuka ke Kiri
Verteks:
Fokus:
Sumbu Simetri:
Direktriks:
Langkah 7