Matematika Berhingga Contoh

Cari Nilai Eigen [[0,0.1,0.9],[0.6,0,0.4],[0.9,0.1,0]]
Langkah 1
Gunakan rumus untuk menentukan persamaan karakteristik .
Langkah 2
Matriks satuan atau matriks satuan dengan ordo adalah matriks persegi dengan bilangan satu di diagonal utama dan nol di elemen lainnya.
Langkah 3
Substitusikan nilai-nilai yang diketahui ke dalam .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Substitusikan untuk .
Langkah 3.2
Substitusikan untuk .
Langkah 4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1
Kalikan dengan setiap elemen di dalam matriks tersebut.
Langkah 4.1.2
Sederhanakan setiap elemen dalam matriks.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.1
Kalikan dengan .
Langkah 4.1.2.2
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.2.1
Kalikan dengan .
Langkah 4.1.2.2.2
Kalikan dengan .
Langkah 4.1.2.3
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.3.1
Kalikan dengan .
Langkah 4.1.2.3.2
Kalikan dengan .
Langkah 4.1.2.4
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.4.1
Kalikan dengan .
Langkah 4.1.2.4.2
Kalikan dengan .
Langkah 4.1.2.5
Kalikan dengan .
Langkah 4.1.2.6
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.6.1
Kalikan dengan .
Langkah 4.1.2.6.2
Kalikan dengan .
Langkah 4.1.2.7
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.7.1
Kalikan dengan .
Langkah 4.1.2.7.2
Kalikan dengan .
Langkah 4.1.2.8
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 4.1.2.8.1
Kalikan dengan .
Langkah 4.1.2.8.2
Kalikan dengan .
Langkah 4.1.2.9
Kalikan dengan .
Langkah 4.2
Tambahkan elemen yang seletak.
Langkah 4.3
Simplify each element.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1
Kurangi dengan .
Langkah 4.3.2
Tambahkan dan .
Langkah 4.3.3
Tambahkan dan .
Langkah 4.3.4
Tambahkan dan .
Langkah 4.3.5
Kurangi dengan .
Langkah 4.3.6
Tambahkan dan .
Langkah 4.3.7
Tambahkan dan .
Langkah 4.3.8
Tambahkan dan .
Langkah 4.3.9
Kurangi dengan .
Langkah 5
Find the determinant.
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Ketuk untuk lebih banyak langkah...
Langkah 5.1.1
Consider the corresponding sign chart.
Langkah 5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Langkah 5.1.3
The minor for is the determinant with row and column deleted.
Langkah 5.1.4
Multiply element by its cofactor.
Langkah 5.1.5
The minor for is the determinant with row and column deleted.
Langkah 5.1.6
Multiply element by its cofactor.
Langkah 5.1.7
The minor for is the determinant with row and column deleted.
Langkah 5.1.8
Multiply element by its cofactor.
Langkah 5.1.9
Add the terms together.
Langkah 5.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 5.2.1
Determinan dari matriks dapat dicari menggunakan rumus .
Langkah 5.2.2
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.2.1
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 5.2.2.2
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 5.2.2.2.1
Pindahkan .
Langkah 5.2.2.2.2
Kalikan dengan .
Langkah 5.2.2.3
Kalikan dengan .
Langkah 5.2.2.4
Kalikan dengan .
Langkah 5.2.2.5
Kalikan dengan .
Langkah 5.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 5.3.1
Determinan dari matriks dapat dicari menggunakan rumus .
Langkah 5.3.2
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 5.3.2.1
Kalikan dengan .
Langkah 5.3.2.2
Kalikan dengan .
Langkah 5.4
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 5.4.1
Determinan dari matriks dapat dicari menggunakan rumus .
Langkah 5.4.2
Sederhanakan determinannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.4.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 5.4.2.1.1
Kalikan dengan .
Langkah 5.4.2.1.2
Kalikan dengan .
Langkah 5.4.2.2
Susun kembali dan .
Langkah 5.5
Sederhanakan determinannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.5.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 5.5.1.1
Terapkan sifat distributif.
Langkah 5.5.1.2
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 5.5.1.2.1
Pindahkan .
Langkah 5.5.1.2.2
Kalikan dengan .
Ketuk untuk lebih banyak langkah...
Langkah 5.5.1.2.2.1
Naikkan menjadi pangkat .
Langkah 5.5.1.2.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 5.5.1.2.3
Tambahkan dan .
Langkah 5.5.1.3
Kalikan dengan .
Langkah 5.5.1.4
Terapkan sifat distributif.
Langkah 5.5.1.5
Kalikan dengan .
Langkah 5.5.1.6
Kalikan dengan .
Langkah 5.5.1.7
Terapkan sifat distributif.
Langkah 5.5.1.8
Kalikan dengan .
Langkah 5.5.1.9
Kalikan dengan .
Langkah 5.5.2
Tambahkan dan .
Langkah 5.5.3
Tambahkan dan .
Langkah 5.5.4
Tambahkan dan .
Langkah 6
Atur polinomial karakteristiknya agar sama dengan untuk menemukan nilai eigen .
Langkah 7
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Gambarkan setiap sisi persamaan. Penyelesaiannya adalah nilai x dari titik perpotongan.