Masukkan soal...
Matematika Berhingga Contoh
Langkah 1
Gunakan rumus untuk menentukan persamaan karakteristik .
Langkah 2
Matriks satuan atau matriks satuan dengan ordo adalah matriks persegi dengan bilangan satu di diagonal utama dan nol di elemen lainnya.
Langkah 3
Langkah 3.1
Substitusikan untuk .
Langkah 3.2
Substitusikan untuk .
Langkah 4
Langkah 4.1
Sederhanakan setiap suku.
Langkah 4.1.1
Kalikan dengan setiap elemen di dalam matriks tersebut.
Langkah 4.1.2
Sederhanakan setiap elemen dalam matriks.
Langkah 4.1.2.1
Kalikan dengan .
Langkah 4.1.2.2
Kalikan .
Langkah 4.1.2.2.1
Kalikan dengan .
Langkah 4.1.2.2.2
Kalikan dengan .
Langkah 4.1.2.3
Kalikan .
Langkah 4.1.2.3.1
Kalikan dengan .
Langkah 4.1.2.3.2
Kalikan dengan .
Langkah 4.1.2.4
Kalikan .
Langkah 4.1.2.4.1
Kalikan dengan .
Langkah 4.1.2.4.2
Kalikan dengan .
Langkah 4.1.2.5
Kalikan dengan .
Langkah 4.1.2.6
Kalikan .
Langkah 4.1.2.6.1
Kalikan dengan .
Langkah 4.1.2.6.2
Kalikan dengan .
Langkah 4.1.2.7
Kalikan .
Langkah 4.1.2.7.1
Kalikan dengan .
Langkah 4.1.2.7.2
Kalikan dengan .
Langkah 4.1.2.8
Kalikan .
Langkah 4.1.2.8.1
Kalikan dengan .
Langkah 4.1.2.8.2
Kalikan dengan .
Langkah 4.1.2.9
Kalikan dengan .
Langkah 4.2
Tambahkan elemen yang seletak.
Langkah 4.3
Simplify each element.
Langkah 4.3.1
Kurangi dengan .
Langkah 4.3.2
Tambahkan dan .
Langkah 4.3.3
Tambahkan dan .
Langkah 4.3.4
Tambahkan dan .
Langkah 4.3.5
Kurangi dengan .
Langkah 4.3.6
Tambahkan dan .
Langkah 4.3.7
Tambahkan dan .
Langkah 4.3.8
Tambahkan dan .
Langkah 4.3.9
Kurangi dengan .
Langkah 5
Langkah 5.1
Choose the row or column with the most elements. If there are no elements choose any row or column. Multiply every element in row by its cofactor and add.
Langkah 5.1.1
Consider the corresponding sign chart.
Langkah 5.1.2
The cofactor is the minor with the sign changed if the indices match a position on the sign chart.
Langkah 5.1.3
The minor for is the determinant with row and column deleted.
Langkah 5.1.4
Multiply element by its cofactor.
Langkah 5.1.5
The minor for is the determinant with row and column deleted.
Langkah 5.1.6
Multiply element by its cofactor.
Langkah 5.1.7
The minor for is the determinant with row and column deleted.
Langkah 5.1.8
Multiply element by its cofactor.
Langkah 5.1.9
Add the terms together.
Langkah 5.2
Evaluasi .
Langkah 5.2.1
Determinan dari matriks dapat dicari menggunakan rumus .
Langkah 5.2.2
Sederhanakan setiap suku.
Langkah 5.2.2.1
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 5.2.2.2
Kalikan dengan dengan menambahkan eksponennya.
Langkah 5.2.2.2.1
Pindahkan .
Langkah 5.2.2.2.2
Kalikan dengan .
Langkah 5.2.2.3
Kalikan dengan .
Langkah 5.2.2.4
Kalikan dengan .
Langkah 5.2.2.5
Kalikan dengan .
Langkah 5.3
Evaluasi .
Langkah 5.3.1
Determinan dari matriks dapat dicari menggunakan rumus .
Langkah 5.3.2
Sederhanakan setiap suku.
Langkah 5.3.2.1
Kalikan dengan .
Langkah 5.3.2.2
Kalikan dengan .
Langkah 5.4
Evaluasi .
Langkah 5.4.1
Determinan dari matriks dapat dicari menggunakan rumus .
Langkah 5.4.2
Sederhanakan determinannya.
Langkah 5.4.2.1
Sederhanakan setiap suku.
Langkah 5.4.2.1.1
Kalikan dengan .
Langkah 5.4.2.1.2
Kalikan dengan .
Langkah 5.4.2.2
Susun kembali dan .
Langkah 5.5
Sederhanakan determinannya.
Langkah 5.5.1
Sederhanakan setiap suku.
Langkah 5.5.1.1
Terapkan sifat distributif.
Langkah 5.5.1.2
Kalikan dengan dengan menambahkan eksponennya.
Langkah 5.5.1.2.1
Pindahkan .
Langkah 5.5.1.2.2
Kalikan dengan .
Langkah 5.5.1.2.2.1
Naikkan menjadi pangkat .
Langkah 5.5.1.2.2.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 5.5.1.2.3
Tambahkan dan .
Langkah 5.5.1.3
Kalikan dengan .
Langkah 5.5.1.4
Terapkan sifat distributif.
Langkah 5.5.1.5
Kalikan dengan .
Langkah 5.5.1.6
Kalikan dengan .
Langkah 5.5.1.7
Terapkan sifat distributif.
Langkah 5.5.1.8
Kalikan dengan .
Langkah 5.5.1.9
Kalikan dengan .
Langkah 5.5.2
Tambahkan dan .
Langkah 5.5.3
Tambahkan dan .
Langkah 5.5.4
Tambahkan dan .
Langkah 6
Atur polinomial karakteristiknya agar sama dengan untuk menemukan nilai eigen .
Langkah 7
Langkah 7.1
Gambarkan setiap sisi persamaan. Penyelesaiannya adalah nilai x dari titik perpotongan.