Kalkulus Contoh

Tentukan Garis Singgung pada (1,1) f(x)=1/(x^2) at (1,1)
at
Langkah 1
Tentukan turunan pertama dan evaluasi di dan untuk menentukan gradien garis tangen.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Terapkan aturan-aturan dasar eksponen.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Tulis kembali sebagai .
Langkah 1.1.2
Kalikan eksponen dalam .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 1.1.2.2
Kalikan dengan .
Langkah 1.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 1.3.2
Gabungkan suku-sukunya.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.2.1
Gabungkan dan .
Langkah 1.3.2.2
Pindahkan tanda negatif di depan pecahan.
Langkah 1.4
Evaluasi turunan pada .
Langkah 1.5
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.5.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 1.5.2
Bagilah dengan .
Langkah 1.5.3
Kalikan dengan .
Langkah 2
Masukkan nilai gradien dan titik koordinat ke dalam rumus persamaan garis lurus dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Gunakan gradien dan titik yang diberikan untuk menggantikan dan dalam bentuk titik kemiringan , yang diturunkan dari persamaan gradien .
Langkah 2.2
Sederhanakan persamaannya dan pastikan tetap dalam bentuk titik kemiringan.
Langkah 2.3
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1.1
Tulis kembali.
Langkah 2.3.1.2
Sederhanakan dengan menambahkan nol.
Langkah 2.3.1.3
Terapkan sifat distributif.
Langkah 2.3.1.4
Kalikan dengan .
Langkah 2.3.2
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.2.1
Tambahkan ke kedua sisi persamaan.
Langkah 2.3.2.2
Tambahkan dan .
Langkah 3