Kalkulus Contoh

Tentukan Garis Singgung pada x=4 f(x)=( akar kuadrat dari x+1)/( akar kuadrat dari x+5) ; x=4
;
Langkah 1
Temukan nilai yang sesuai pada .
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Substitusikan ke dalam .
Langkah 1.2
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.1
Hilangkan tanda kurung.
Langkah 1.2.2
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 1.2.2.1
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.2.1.1
Tulis kembali sebagai .
Langkah 1.2.2.1.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 1.2.2.1.3
Tambahkan dan .
Langkah 1.2.2.2
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.2.2.2.1
Tulis kembali sebagai .
Langkah 1.2.2.2.2
Mengeluarkan suku-suku dari bawah akar, dengan asumsi bahwa bilangan riil positif.
Langkah 1.2.2.2.3
Tambahkan dan .
Langkah 2
Tentukan turunan pertama dan evaluasi di dan untuk menentukan gradien garis tangen.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Terapkan aturan-aturan dasar eksponen.
Ketuk untuk lebih banyak langkah...
Langkah 2.1.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 2.1.2
Gunakan untuk menuliskan kembali sebagai .
Langkah 2.2
Diferensialkan menggunakan Kaidah Hasil Bagi yang menyatakan bahwa adalah di mana dan .
Langkah 2.3
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.4
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 2.5
Gabungkan dan .
Langkah 2.6
Gabungkan pembilang dari penyebut persekutuan.
Langkah 2.7
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 2.7.1
Kalikan dengan .
Langkah 2.7.2
Kurangi dengan .
Langkah 2.8
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 2.8.1
Pindahkan tanda negatif di depan pecahan.
Langkah 2.8.2
Gabungkan dan .
Langkah 2.8.3
Pindahkan menjadi penyebut menggunakan aturan eksponen negatif .
Langkah 2.9
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.10
Tambahkan dan .
Langkah 2.11
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.12
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.13
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 2.14
Gabungkan dan .
Langkah 2.15
Gabungkan pembilang dari penyebut persekutuan.
Langkah 2.16
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 2.16.1
Kalikan dengan .
Langkah 2.16.2
Kurangi dengan .
Langkah 2.17
Gabungkan pecahan.
Ketuk untuk lebih banyak langkah...
Langkah 2.17.1
Pindahkan tanda negatif di depan pecahan.
Langkah 2.17.2
Gabungkan dan .
Langkah 2.17.3
Pindahkan menjadi penyebut menggunakan aturan eksponen negatif .
Langkah 2.18
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.19
Tambahkan dan .
Langkah 2.20
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.20.1
Terapkan sifat distributif.
Langkah 2.20.2
Terapkan sifat distributif.
Langkah 2.20.3
Terapkan sifat distributif.
Langkah 2.20.4
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 2.20.4.1
Gabungkan suku balikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 2.20.4.1.1
Kurangi dengan .
Langkah 2.20.4.1.2
Tambahkan dan .
Langkah 2.20.4.2
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 2.20.4.2.1
Gabungkan dan .
Langkah 2.20.4.2.2
Kalikan dengan .
Langkah 2.20.4.2.3
Tulis kembali sebagai .
Langkah 2.20.4.3
Gabungkan pembilang dari penyebut persekutuan.
Langkah 2.20.4.4
Kurangi dengan .
Langkah 2.20.4.5
Faktorkan dari .
Langkah 2.20.4.6
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 2.20.4.6.1
Faktorkan dari .
Langkah 2.20.4.6.2
Batalkan faktor persekutuan.
Langkah 2.20.4.6.3
Tulis kembali pernyataannya.
Langkah 2.20.5
Gabungkan suku-sukunya.
Ketuk untuk lebih banyak langkah...
Langkah 2.20.5.1
Tulis kembali sebagai hasil kali.
Langkah 2.20.5.2
Kalikan dengan .
Langkah 2.21
Evaluasi turunan pada .
Langkah 2.22
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.22.1
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 2.22.1.1
Tulis kembali sebagai .
Langkah 2.22.1.2
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 2.22.1.3
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.22.1.3.1
Batalkan faktor persekutuan.
Langkah 2.22.1.3.2
Tulis kembali pernyataannya.
Langkah 2.22.1.4
Evaluasi eksponennya.
Langkah 2.22.1.5
Tambahkan dan .
Langkah 2.22.1.6
Tulis kembali sebagai .
Langkah 2.22.1.7
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 2.22.1.8
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 2.22.1.8.1
Batalkan faktor persekutuan.
Langkah 2.22.1.8.2
Tulis kembali pernyataannya.
Langkah 2.22.1.9
Evaluasi eksponennya.
Langkah 2.22.1.10
Naikkan menjadi pangkat .
Langkah 2.22.2
Kurangi pernyataan tersebut dengan menghapus faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 2.22.2.1
Kalikan dengan .
Langkah 2.22.2.2
Hapus faktor persekutuan dari dan .
Ketuk untuk lebih banyak langkah...
Langkah 2.22.2.2.1
Faktorkan dari .
Langkah 2.22.2.2.2
Batalkan faktor persekutuan.
Ketuk untuk lebih banyak langkah...
Langkah 2.22.2.2.2.1
Faktorkan dari .
Langkah 2.22.2.2.2.2
Batalkan faktor persekutuan.
Langkah 2.22.2.2.2.3
Tulis kembali pernyataannya.
Langkah 3
Masukkan nilai gradien dan titik koordinat ke dalam rumus persamaan garis lurus dan selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Gunakan gradien dan titik yang diberikan untuk menggantikan dan dalam bentuk titik kemiringan , yang diturunkan dari persamaan gradien .
Langkah 3.2
Sederhanakan persamaannya dan pastikan tetap dalam bentuk titik kemiringan.
Langkah 3.3
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1
Sederhanakan .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1.1
Tulis kembali.
Langkah 3.3.1.2
Sederhanakan dengan menambahkan nol.
Langkah 3.3.1.3
Terapkan sifat distributif.
Langkah 3.3.1.4
Gabungkan dan .
Langkah 3.3.1.5
Gabungkan dan .
Langkah 3.3.1.6
Pindahkan tanda negatif di depan pecahan.
Langkah 3.3.2
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.2.1
Tambahkan ke kedua sisi persamaan.
Langkah 3.3.2.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 3.3.2.3
Tulis setiap pernyataan menggunakan penyebut umum dari , dengan mengalikan masing-masing pembilang dan penyebut dengan faktor dari yang sesuai.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.2.3.1
Kalikan dengan .
Langkah 3.3.2.3.2
Kalikan dengan .
Langkah 3.3.2.4
Gabungkan pembilang dari penyebut persekutuan.
Langkah 3.3.2.5
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 3.3.2.5.1
Kalikan dengan .
Langkah 3.3.2.5.2
Tambahkan dan .
Langkah 3.3.3
Susun kembali suku-suku.
Langkah 4