Kalkulus Contoh

Integralkan Menggunakan Substitusi-u integral dari 1 ke 3 dari (x+1)e^(x^2+2x) terhadap x
Langkah 1
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Diferensialkan .
Langkah 1.1.2
Diferensialkan.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.1.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.3.3
Kalikan dengan .
Langkah 1.2
Substitusikan batas bawah untuk di .
Langkah 1.3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.3.1.1
Satu dipangkat berapa pun sama dengan satu.
Langkah 1.3.1.2
Kalikan dengan .
Langkah 1.3.2
Tambahkan dan .
Langkah 1.4
Substitusikan batas atas untuk di .
Langkah 1.5
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.5.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 1.5.1.1
Naikkan menjadi pangkat .
Langkah 1.5.1.2
Kalikan dengan .
Langkah 1.5.2
Tambahkan dan .
Langkah 1.6
Nilai-nilai yang ditemukan untuk dan akan digunakan untuk mengevaluasi integral tentunya.
Langkah 1.7
Tulis kembali soalnya menggunakan , , dan batas integral yang baru.
Langkah 2
Gabungkan dan .
Langkah 3
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 4
Integral dari terhadap adalah .
Langkah 5
Evaluasi pada dan pada .
Langkah 6
Hasilnya dapat ditampilkan dalam beberapa bentuk.
Bentuk Eksak:
Bentuk Desimal: