Kalkulus Contoh

Integralkan Menggunakan Substitusi-u integral dari (x^2-1)/( akar kuadrat dari 2x-1) terhadap x
Langkah 1
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Biarkan . Tentukan .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.1
Diferensialkan .
Langkah 1.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap (Variabel1) adalah .
Langkah 1.1.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 1.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.1.3.3
Kalikan dengan .
Langkah 1.1.4
Diferensialkan menggunakan Aturan Konstanta.
Ketuk untuk lebih banyak langkah...
Langkah 1.1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.1.4.2
Tambahkan dan .
Langkah 1.2
Tulis kembali soalnya menggunakan dan .
Langkah 2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Kalikan dengan .
Langkah 2.2
Pindahkan ke sebelah kiri .
Langkah 3
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 4
Terapkan aturan-aturan dasar eksponen.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Gunakan untuk menuliskan kembali sebagai .
Langkah 4.2
Pindahkan dari penyebut dengan menaikkannya menjadi pangkat .
Langkah 4.3
Kalikan eksponen dalam .
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 4.3.2
Gabungkan dan .
Langkah 4.3.3
Pindahkan tanda negatif di depan pecahan.
Langkah 5
Perluas .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Tulis kembali sebagai .
Langkah 5.2
Terapkan sifat distributif.
Langkah 5.3
Terapkan sifat distributif.
Langkah 5.4
Terapkan sifat distributif.
Langkah 5.5
Terapkan sifat distributif.
Langkah 5.6
Terapkan sifat distributif.
Langkah 5.7
Terapkan sifat distributif.
Langkah 5.8
Terapkan sifat distributif.
Langkah 5.9
Kalikan dengan .
Langkah 5.10
Naikkan menjadi pangkat .
Langkah 5.11
Naikkan menjadi pangkat .
Langkah 5.12
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 5.13
Tambahkan dan .
Langkah 5.14
Kalikan dengan .
Langkah 5.15
Gabungkan dan .
Langkah 5.16
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 5.17
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 5.18
Gabungkan dan .
Langkah 5.19
Gabungkan pembilang dari penyebut persekutuan.
Langkah 5.20
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 5.20.1
Kalikan dengan .
Langkah 5.20.2
Kurangi dengan .
Langkah 5.21
Kalikan dengan .
Langkah 5.22
Kalikan dengan .
Langkah 5.23
Gabungkan dan .
Langkah 5.24
Naikkan menjadi pangkat .
Langkah 5.25
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 5.26
Tuliskan sebagai pecahan dengan penyebut persekutuan.
Langkah 5.27
Gabungkan pembilang dari penyebut persekutuan.
Langkah 5.28
Kurangi dengan .
Langkah 5.29
Kalikan dengan .
Langkah 5.30
Kalikan dengan .
Langkah 5.31
Gabungkan dan .
Langkah 5.32
Naikkan menjadi pangkat .
Langkah 5.33
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 5.34
Tuliskan sebagai pecahan dengan penyebut persekutuan.
Langkah 5.35
Gabungkan pembilang dari penyebut persekutuan.
Langkah 5.36
Kurangi dengan .
Langkah 5.37
Kalikan dengan .
Langkah 5.38
Kalikan dengan .
Langkah 5.39
Gabungkan dan .
Langkah 5.40
Tambahkan dan .
Langkah 5.41
Gabungkan dan .
Langkah 5.42
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 5.43
Gabungkan dan .
Langkah 5.44
Gabungkan pembilang dari penyebut persekutuan.
Langkah 5.45
Gabungkan pembilang dari penyebut persekutuan.
Langkah 5.46
Gabungkan pembilang dari penyebut persekutuan.
Langkah 5.47
Susun kembali dan .
Langkah 5.48
Susun kembali dan .
Langkah 5.49
Pindahkan .
Langkah 6
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Tulis kembali sebagai .
Langkah 6.2
Kalikan dengan .
Langkah 6.3
Tambahkan dan .
Langkah 7
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 8
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Kalikan dengan .
Langkah 8.2
Kalikan dengan .
Langkah 9
Bagi integral tunggal menjadi beberapa integral.
Langkah 10
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 11
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 12
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 13
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 13.1
Gabungkan dan .
Langkah 13.2
Gabungkan dan .
Langkah 14
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 15
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 16
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 16.1
Sederhanakan.
Langkah 16.2
Susun kembali suku-suku.
Langkah 17
Ganti semua kemunculan dengan .
Langkah 18
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 18.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 18.1.1
Gabungkan dan .
Langkah 18.1.2
Gabungkan dan .
Langkah 18.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 18.3
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 18.4
Tulis setiap pernyataan menggunakan penyebut umum dari , dengan mengalikan masing-masing pembilang dan penyebut dengan faktor dari yang sesuai.
Ketuk untuk lebih banyak langkah...
Langkah 18.4.1
Kalikan dengan .
Langkah 18.4.2
Kalikan dengan .
Langkah 18.4.3
Kalikan dengan .
Langkah 18.4.4
Kalikan dengan .
Langkah 18.5
Gabungkan pembilang dari penyebut persekutuan.
Langkah 18.6
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 18.6.1
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 18.6.1.1
Susun kembali pernyataan tersebut.
Ketuk untuk lebih banyak langkah...
Langkah 18.6.1.1.1
Pindahkan .
Langkah 18.6.1.1.2
Pindahkan .
Langkah 18.6.1.2
Faktorkan dari .
Langkah 18.6.1.3
Faktorkan dari .
Langkah 18.6.1.4
Faktorkan dari .
Langkah 18.6.2
Kalikan dengan .
Langkah 18.6.3
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 18.6.3.1
Bagilah dengan .
Langkah 18.6.3.2
Sederhanakan.
Langkah 18.6.3.3
Terapkan sifat distributif.
Langkah 18.6.3.4
Kalikan dengan .
Langkah 18.6.3.5
Kalikan dengan .
Langkah 18.6.4
Kurangi dengan .
Langkah 18.7
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 18.8
Gabungkan dan .
Langkah 18.9
Gabungkan pembilang dari penyebut persekutuan.
Langkah 18.10
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 18.10.1
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 18.10.1.1
Pindahkan .
Langkah 18.10.1.2
Faktorkan dari .
Langkah 18.10.1.3
Faktorkan dari .
Langkah 18.10.1.4
Faktorkan dari .
Langkah 18.10.2
Kalikan dengan .
Langkah 18.10.3
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 18.10.3.1
Bagilah dengan .
Langkah 18.10.3.2
Sederhanakan.
Langkah 18.10.3.3
Perluas menggunakan Metode FOIL.
Ketuk untuk lebih banyak langkah...
Langkah 18.10.3.3.1
Terapkan sifat distributif.
Langkah 18.10.3.3.2
Terapkan sifat distributif.
Langkah 18.10.3.3.3
Terapkan sifat distributif.
Langkah 18.10.3.4
Sederhanakan dan gabungkan suku-suku sejenis.
Ketuk untuk lebih banyak langkah...
Langkah 18.10.3.4.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 18.10.3.4.1.1
Tulis kembali menggunakan sifat komutatif dari perkalian.
Langkah 18.10.3.4.1.2
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 18.10.3.4.1.2.1
Pindahkan .
Langkah 18.10.3.4.1.2.2
Kalikan dengan .
Langkah 18.10.3.4.1.3
Kalikan dengan .
Langkah 18.10.3.4.1.4
Kalikan dengan .
Langkah 18.10.3.4.1.5
Kalikan dengan .
Langkah 18.10.3.4.1.6
Kalikan dengan .
Langkah 18.10.3.4.2
Kurangi dengan .
Langkah 18.10.4
Kurangi dengan .
Langkah 18.10.5
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 18.10.5.1
Faktorkan dari .
Langkah 18.10.5.2
Faktorkan dari .
Langkah 18.10.5.3
Faktorkan dari .
Langkah 18.10.5.4
Faktorkan dari .
Langkah 18.10.5.5
Faktorkan dari .
Langkah 18.10.6
Kalikan dengan .
Langkah 18.11
Gabungkan.
Langkah 18.12
Batalkan faktor persekutuan.
Langkah 18.13
Tulis kembali pernyataannya.
Langkah 18.14
Kalikan dengan .