Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Tulis kembali sebagai .
Langkah 1.2
Perluas dengan memindahkan ke luar logaritma.
Langkah 2
Langkah 2.1
Pindahkan limit ke dalam eksponen.
Langkah 2.2
Gabungkan dan .
Langkah 3
Langkah 3.1
Evaluasi limit dari pembilang dan limit dari penyebutnya.
Langkah 3.1.1
Ambil limit dari pembilang dan limit dari penyebut.
Langkah 3.1.2
Evaluasi limit dari pembilangnya.
Langkah 3.1.2.1
Pindahkan limit ke dalam logaritma.
Langkah 3.1.2.2
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 3.1.2.3
Pindahkan limit ke dalam eksponen.
Langkah 3.1.2.4
Evaluasi limit-limit dengan memasukkan ke semua munculnya (Variabel1).
Langkah 3.1.2.4.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 3.1.2.4.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 3.1.2.5
Sederhanakan jawabannya.
Langkah 3.1.2.5.1
Apa pun yang dinaikkan ke adalah .
Langkah 3.1.2.5.2
Tambahkan dan .
Langkah 3.1.2.5.3
Log alami dari adalah .
Langkah 3.1.3
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 3.1.4
Pernyataannya memuat pembagian oleh . Pernyataannya tidak terdefinisi.
Tidak terdefinisi
Langkah 3.2
Karena adalah bentuk tak tentu, terapkan Kaidah L'Hospital. Kaidah L'Hospital menyatakan bahwa limit dari hasil bagi fungsi sama dengan limit dari hasil bagi turunannya.
Langkah 3.3
Menentukan turunan dari pembilang dan penyebut.
Langkah 3.3.1
Diferensialkan pembilang dan penyebutnya.
Langkah 3.3.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Langkah 3.3.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.3.2.2
Turunan dari terhadap adalah .
Langkah 3.3.2.3
Ganti semua kemunculan dengan .
Langkah 3.3.3
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 3.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.3.5
Diferensialkan menggunakan Kaidah Eksponensial yang menyatakan bahwa adalah di mana =.
Langkah 3.3.6
Sederhanakan.
Langkah 3.3.6.1
Susun kembali faktor-faktor dari .
Langkah 3.3.6.2
Kalikan dengan .
Langkah 3.3.7
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.4
Kalikan pembilang dengan balikan dari penyebut.
Langkah 3.5
Kalikan dengan .
Langkah 4
Langkah 4.1
Pisahkan limitnya menggunakan Kaidah Hasil Bagi Limit pada limitnya ketika mendekati .
Langkah 4.2
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 4.3
Evaluasi limit dari yang tetap ketika (Variabel1) mendekati .
Langkah 4.4
Pindahkan limit ke dalam eksponen.
Langkah 4.5
Pisahkan limitnya menggunakan Kaidah Jumlah Limit pada limitnya ketika mendekati .
Langkah 4.6
Pindahkan limit ke dalam eksponen.
Langkah 5
Langkah 5.1
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 5.2
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 5.3
Evaluasi limit dari (Variabel0) dengan memasukkan ke dalam (Variabel2).
Langkah 6
Langkah 6.1
Sederhanakan pembilangnya.
Langkah 6.1.1
Apa pun yang dinaikkan ke adalah .
Langkah 6.1.2
Tambahkan dan .
Langkah 6.2
Sederhanakan penyebutnya.
Langkah 6.2.1
Apa pun yang dinaikkan ke adalah .
Langkah 6.2.2
Tambahkan dan .
Langkah 6.3
Bagilah dengan .
Langkah 7
Hasilnya dapat ditampilkan dalam beberapa bentuk.
Bentuk Eksak:
Bentuk Desimal: