Kalkulus Contoh

Cari dy/dx -3y-x=4y^3+2y^2+3x^3
Langkah 1
Diferensialkan kedua sisi persamaan tersebut.
Langkah 2
Diferensialkan sisi kiri dari persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2
Tulis kembali sebagai .
Langkah 2.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.3.3
Kalikan dengan .
Langkah 2.4
Susun kembali suku-suku.
Langkah 3
Diferensialkan sisi kanan dari persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 3.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.2.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 3.2.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.2.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.2.2.3
Ganti semua kemunculan dengan .
Langkah 3.2.3
Tulis kembali sebagai .
Langkah 3.2.4
Kalikan dengan .
Langkah 3.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.2
Diferensialkan menggunakan kaidah rantai, yang menyatakan bahwa adalah di mana dan .
Ketuk untuk lebih banyak langkah...
Langkah 3.3.2.1
Untuk menerapkan Kaidah Rantai, atur sebagai .
Langkah 3.3.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.3.2.3
Ganti semua kemunculan dengan .
Langkah 3.3.3
Tulis kembali sebagai .
Langkah 3.3.4
Kalikan dengan .
Langkah 3.4
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 3.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.4.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.4.3
Kalikan dengan .
Langkah 3.5
Susun kembali suku-suku.
Langkah 4
Membentuk ulang persamaan dengan mengatur sisi kiri sama dengan sisi kanan.
Langkah 5
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Karena ada di sisi kanan persamaan, tukar sisinya sehingga berada di sisi kiri persamaan.
Langkah 5.2
Tambahkan ke kedua sisi persamaan.
Langkah 5.3
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 5.4
Faktorkan dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.4.1
Faktorkan dari .
Langkah 5.4.2
Faktorkan dari .
Langkah 5.4.3
Faktorkan dari .
Langkah 5.4.4
Faktorkan dari .
Langkah 5.4.5
Faktorkan dari .
Langkah 5.5
Bagi setiap suku pada dengan dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 5.5.1
Bagilah setiap suku di dengan .
Langkah 5.5.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 5.5.2.1
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.5.2.1.1
Batalkan faktor persekutuan.
Langkah 5.5.2.1.2
Bagilah dengan .
Langkah 5.5.3
Sederhanakan sisi kanannya.
Ketuk untuk lebih banyak langkah...
Langkah 5.5.3.1
Gabungkan pembilang dari penyebut persekutuan.
Langkah 5.5.3.2
Tulis kembali sebagai .
Langkah 5.5.3.3
Faktorkan dari .
Langkah 5.5.3.4
Faktorkan dari .
Langkah 5.5.3.5
Pindahkan tanda negatif di depan pecahan.
Langkah 6
Ganti dengan .