Kalkulus Contoh

Selesaikan Persamaan Diferensial (x^2+y^2+x)dx+(xy)dy=0
Langkah 1
Tulis soal sebagai pernyataan matematika.
Langkah 2
Temukan di mana .
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Diferensialkan terhadap .
Langkah 2.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.5
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.6
Gabungkan suku-sukunya.
Ketuk untuk lebih banyak langkah...
Langkah 2.6.1
Tambahkan dan .
Langkah 2.6.2
Tambahkan dan .
Langkah 3
Temukan di mana .
Ketuk untuk lebih banyak langkah...
Langkah 3.1
Diferensialkan terhadap .
Langkah 3.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.4
Kalikan dengan .
Langkah 4
Periksa bahwa .
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Substitusikan ke dan ke .
Langkah 4.2
Karena sisi kiri tidak sama dengan sisi kanan, maka persamaan bukan identitas trigonometri.
bukan identitas.
bukan identitas.
Langkah 5
Temukan faktor integral .
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Substitusikan untuk .
Langkah 5.2
Substitusikan untuk .
Langkah 5.3
Substitusikan untuk .
Ketuk untuk lebih banyak langkah...
Langkah 5.3.1
Substitusikan untuk .
Langkah 5.3.2
Kurangi dengan .
Langkah 5.3.3
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 5.3.3.1
Batalkan faktor persekutuan.
Langkah 5.3.3.2
Tulis kembali pernyataannya.
Langkah 5.4
Temukan faktor integral .
Langkah 6
Evaluasi integral .
Ketuk untuk lebih banyak langkah...
Langkah 6.1
Integral dari terhadap adalah .
Langkah 6.2
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 6.2.1
Sederhanakan.
Langkah 6.2.2
Eksponensial dan logaritma adalah fungsi balikan.
Langkah 7
Kalikan kedua sisi dengan faktor integral .
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Kalikan dengan .
Langkah 7.2
Terapkan sifat distributif.
Langkah 7.3
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 7.3.1
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 7.3.1.1
Kalikan dengan .
Ketuk untuk lebih banyak langkah...
Langkah 7.3.1.1.1
Naikkan menjadi pangkat .
Langkah 7.3.1.1.2
Gunakan kaidah pangkat untuk menggabungkan pangkat.
Langkah 7.3.1.2
Tambahkan dan .
Langkah 7.3.2
Kalikan dengan .
Langkah 7.4
Kalikan dengan .
Langkah 7.5
Kalikan dengan dengan menambahkan eksponennya.
Ketuk untuk lebih banyak langkah...
Langkah 7.5.1
Pindahkan .
Langkah 7.5.2
Kalikan dengan .
Langkah 8
Atur agar sama dengan integral .
Langkah 9
Integralkan untuk menemukan .
Ketuk untuk lebih banyak langkah...
Langkah 9.1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 9.2
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 9.3
Sederhanakan jawabannya.
Ketuk untuk lebih banyak langkah...
Langkah 9.3.1
Tulis kembali sebagai .
Langkah 9.3.2
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 9.3.2.1
Gabungkan dan .
Langkah 9.3.2.2
Gabungkan dan .
Langkah 9.3.3
Susun kembali suku-suku.
Langkah 10
Karena integral akan mengandung konstanta integral, kita dapat mengganti dengan .
Langkah 11
Atur .
Langkah 12
Temukan .
Ketuk untuk lebih banyak langkah...
Langkah 12.1
Diferensialkan terhadap .
Langkah 12.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 12.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 12.3.1
Gabungkan dan .
Langkah 12.3.2
Gabungkan dan .
Langkah 12.3.3
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 12.3.4
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 12.3.5
Gabungkan dan .
Langkah 12.3.6
Gabungkan dan .
Langkah 12.3.7
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 12.3.7.1
Batalkan faktor persekutuan.
Langkah 12.3.7.2
Bagilah dengan .
Langkah 12.4
Diferensialkan menggunakan aturan fungsi yang menyatakan bahwa turunan adalah .
Langkah 12.5
Susun kembali suku-suku.
Langkah 13
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 13.1
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 13.1.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 13.1.2
Gabungkan suku balikan dalam .
Ketuk untuk lebih banyak langkah...
Langkah 13.1.2.1
Kurangi dengan .
Langkah 13.1.2.2
Tambahkan dan .
Langkah 14
Temukan untuk menemukan .
Ketuk untuk lebih banyak langkah...
Langkah 14.1
Integralkan kedua sisi .
Langkah 14.2
Evaluasi .
Langkah 14.3
Bagi integral tunggal menjadi beberapa integral.
Langkah 14.4
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 14.5
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 14.6
Sederhanakan.
Langkah 15
Substitusikan dalam .
Langkah 16
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 16.1
Gabungkan dan .
Langkah 16.2
Gabungkan dan .
Langkah 16.3
Gabungkan dan .
Langkah 16.4
Gabungkan dan .