Kalkulus Contoh

Selesaikan Persamaan Diferensial (dy)/(dx)=4/(1+x^2) , y(1)=pi/2
,
Langkah 1
Tulis kembali persamaan tersebut.
Langkah 2
Integralkan kedua sisi.
Ketuk untuk lebih banyak langkah...
Langkah 2.1
Tulis integral untuk kedua ruas.
Langkah 2.2
Terapkan aturan konstanta.
Langkah 2.3
Integralkan sisi kanan.
Ketuk untuk lebih banyak langkah...
Langkah 2.3.1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.3.2
Tulis kembali sebagai .
Langkah 2.3.3
Integral dari terhadap adalah .
Langkah 2.3.4
Sederhanakan.
Langkah 2.4
Kelompokkan konstanta integrasi di ruas kanan sebagai .
Langkah 3
Gunakan kondisi sarat untuk menemukan nilai dengan mensubstitusikan untuk dan untuk padda .
Langkah 4
Selesaikan .
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Tulis kembali persamaan tersebut sebagai .
Langkah 4.2
Sederhanakan sisi kirinya.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1.1
Nilai eksak dari adalah .
Langkah 4.2.1.2
Batalkan faktor persekutuan dari .
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1.2.1
Batalkan faktor persekutuan.
Langkah 4.2.1.2.2
Tulis kembali pernyataannya.
Langkah 4.3
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 4.3.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 4.3.3
Gabungkan dan .
Langkah 4.3.4
Gabungkan pembilang dari penyebut persekutuan.
Langkah 4.3.5
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.5.1
Kalikan dengan .
Langkah 4.3.5.2
Kurangi dengan .
Langkah 4.3.6
Pindahkan tanda negatif di depan pecahan.
Langkah 5
Substitusikan untuk dalam dan sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 5.1
Substitusikan untuk .