Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Selesaikan .
Langkah 1.1.1
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Langkah 1.1.1.1
Tambahkan ke kedua sisi persamaan.
Langkah 1.1.1.2
Tambahkan ke kedua sisi persamaan.
Langkah 1.1.2
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 1.1.2.1
Bagilah setiap suku di dengan .
Langkah 1.1.2.2
Sederhanakan sisi kirinya.
Langkah 1.1.2.2.1
Batalkan faktor persekutuan dari .
Langkah 1.1.2.2.1.1
Batalkan faktor persekutuan.
Langkah 1.1.2.2.1.2
Bagilah dengan .
Langkah 1.1.2.3
Sederhanakan sisi kanannya.
Langkah 1.1.2.3.1
Hapus faktor persekutuan dari dan .
Langkah 1.1.2.3.1.1
Faktorkan dari .
Langkah 1.1.2.3.1.2
Batalkan faktor persekutuan.
Langkah 1.1.2.3.1.2.1
Faktorkan dari .
Langkah 1.1.2.3.1.2.2
Batalkan faktor persekutuan.
Langkah 1.1.2.3.1.2.3
Tulis kembali pernyataannya.
Langkah 1.1.2.3.1.2.4
Bagilah dengan .
Langkah 1.2
Faktorkan.
Langkah 1.2.1
Faktorkan dari .
Langkah 1.2.1.1
Faktorkan dari .
Langkah 1.2.1.2
Faktorkan dari .
Langkah 1.2.1.3
Faktorkan dari .
Langkah 1.2.2
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 1.2.3
Gabungkan dan .
Langkah 1.2.4
Gabungkan pembilang dari penyebut persekutuan.
Langkah 1.2.5
Pindahkan ke sebelah kiri .
Langkah 1.2.6
Gabungkan eksponen.
Langkah 1.2.6.1
Gabungkan dan .
Langkah 1.2.6.2
Gabungkan dan .
Langkah 1.2.7
Hilangkan tanda kurung yang tidak perlu.
Langkah 1.2.8
Pindahkan ke sebelah kiri .
Langkah 1.2.9
Kalikan dengan .
Langkah 1.3
Kelompokkan kembali faktor.
Langkah 1.4
Kalikan kedua ruas dengan .
Langkah 1.5
Batalkan faktor persekutuan dari .
Langkah 1.5.1
Faktorkan dari .
Langkah 1.5.2
Batalkan faktor persekutuan.
Langkah 1.5.3
Tulis kembali pernyataannya.
Langkah 1.6
Tulis kembali persamaan tersebut.
Langkah 2
Langkah 2.1
Tulis integral untuk kedua ruas.
Langkah 2.2
Integralkan sisi kiri.
Langkah 2.2.1
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Langkah 2.2.1.1
Biarkan . Tentukan .
Langkah 2.2.1.1.1
Diferensialkan .
Langkah 2.2.1.1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.2.1.1.3
Evaluasi .
Langkah 2.2.1.1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.1.1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.1.1.3.3
Kalikan dengan .
Langkah 2.2.1.1.4
Diferensialkan menggunakan Aturan Konstanta.
Langkah 2.2.1.1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.1.1.4.2
Tambahkan dan .
Langkah 2.2.1.2
Tulis kembali soalnya menggunakan dan .
Langkah 2.2.2
Sederhanakan.
Langkah 2.2.2.1
Kalikan dengan .
Langkah 2.2.2.2
Pindahkan ke sebelah kiri .
Langkah 2.2.3
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.2.4
Integral dari terhadap adalah .
Langkah 2.2.5
Sederhanakan.
Langkah 2.2.6
Ganti semua kemunculan dengan .
Langkah 2.3
Integralkan sisi kanan.
Langkah 2.3.1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.3.2
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 2.3.3
Sederhanakan jawabannya.
Langkah 2.3.3.1
Tulis kembali sebagai .
Langkah 2.3.3.2
Sederhanakan.
Langkah 2.3.3.2.1
Kalikan dengan .
Langkah 2.3.3.2.2
Kalikan dengan .
Langkah 2.4
Kelompokkan konstanta integrasi di ruas kanan sebagai .
Langkah 3
Langkah 3.1
Kalikan kedua sisi persamaan dengan .
Langkah 3.2
Sederhanakan kedua sisi dari persamaan tersebut.
Langkah 3.2.1
Sederhanakan sisi kirinya.
Langkah 3.2.1.1
Sederhanakan .
Langkah 3.2.1.1.1
Gabungkan dan .
Langkah 3.2.1.1.2
Batalkan faktor persekutuan dari .
Langkah 3.2.1.1.2.1
Batalkan faktor persekutuan.
Langkah 3.2.1.1.2.2
Tulis kembali pernyataannya.
Langkah 3.2.2
Sederhanakan sisi kanannya.
Langkah 3.2.2.1
Sederhanakan .
Langkah 3.2.2.1.1
Gabungkan dan .
Langkah 3.2.2.1.2
Terapkan sifat distributif.
Langkah 3.2.2.1.3
Batalkan faktor persekutuan dari .
Langkah 3.2.2.1.3.1
Faktorkan dari .
Langkah 3.2.2.1.3.2
Batalkan faktor persekutuan.
Langkah 3.2.2.1.3.3
Tulis kembali pernyataannya.
Langkah 3.3
Untuk menyelesaikan , tulis kembali persamaannya menggunakan sifat-sifat logaritma.
Langkah 3.4
Tulis kembali dalam bentuk eksponensial menggunakan aturan dasar logaritma. Jika dan adalah bilangan riil positif dan , maka setara dengan .
Langkah 3.5
Selesaikan .
Langkah 3.5.1
Tulis kembali persamaan tersebut sebagai .
Langkah 3.5.2
Hapus suku nilai mutlak. Ini membuat di sisi kanan persamaan karena .
Langkah 3.5.3
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 3.5.4
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 3.5.4.1
Bagilah setiap suku di dengan .
Langkah 3.5.4.2
Sederhanakan sisi kirinya.
Langkah 3.5.4.2.1
Batalkan faktor persekutuan dari .
Langkah 3.5.4.2.1.1
Batalkan faktor persekutuan.
Langkah 3.5.4.2.1.2
Bagilah dengan .
Langkah 3.5.4.3
Sederhanakan sisi kanannya.
Langkah 3.5.4.3.1
Sederhanakan setiap suku.
Langkah 3.5.4.3.1.1
Sederhanakan pembilangnya.
Langkah 3.5.4.3.1.1.1
Untuk menuliskan sebagai pecahan dengan penyebut umum, kalikan dengan .
Langkah 3.5.4.3.1.1.2
Gabungkan dan .
Langkah 3.5.4.3.1.1.3
Gabungkan pembilang dari penyebut persekutuan.
Langkah 3.5.4.3.1.1.4
Kalikan dengan .
Langkah 3.5.4.3.1.2
Pindahkan tanda negatif di depan pecahan.
Langkah 3.5.4.3.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 4
Sederhanakan konstanta dari integral.