Masukkan soal...
Kalkulus Contoh
dan
Langkah 1
Langkah 1.1
Faktorkan dari .
Langkah 1.1.1
Faktorkan dari .
Langkah 1.1.2
Faktorkan dari .
Langkah 1.1.3
Faktorkan dari .
Langkah 1.2
Kalikan kedua ruas dengan .
Langkah 1.3
Batalkan faktor persekutuan dari .
Langkah 1.3.1
Batalkan faktor persekutuan.
Langkah 1.3.2
Tulis kembali pernyataannya.
Langkah 1.4
Tulis kembali persamaan tersebut.
Langkah 2
Langkah 2.1
Tulis integral untuk kedua ruas.
Langkah 2.2
Integralkan sisi kiri.
Langkah 2.2.1
Sederhanakan pernyataannya.
Langkah 2.2.1.1
Tiadakan eksponen dari dan pindahkan dari penyebut.
Langkah 2.2.1.2
Sederhanakan.
Langkah 2.2.1.2.1
Kalikan eksponen dalam .
Langkah 2.2.1.2.1.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 2.2.1.2.1.2
Kalikan dengan .
Langkah 2.2.1.2.2
Kalikan dengan .
Langkah 2.2.2
Biarkan . Kemudian sehingga . Tulis kembali menggunakan dan .
Langkah 2.2.2.1
Biarkan . Tentukan .
Langkah 2.2.2.1.1
Diferensialkan .
Langkah 2.2.2.1.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.2.2.1.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.2.2.1.4
Kalikan dengan .
Langkah 2.2.2.2
Tulis kembali soalnya menggunakan dan .
Langkah 2.2.3
Gabungkan dan .
Langkah 2.2.4
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.2.5
Integral dari terhadap adalah .
Langkah 2.2.6
Sederhanakan.
Langkah 2.2.7
Ganti semua kemunculan dengan .
Langkah 2.3
Integralkan sisi kanan.
Langkah 2.3.1
Bagi integral tunggal menjadi beberapa integral.
Langkah 2.3.2
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 2.3.3
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 2.3.4
Terapkan aturan konstanta.
Langkah 2.3.5
Sederhanakan.
Langkah 2.3.5.1
Gabungkan dan .
Langkah 2.3.5.2
Sederhanakan.
Langkah 2.4
Kelompokkan konstanta integrasi di ruas kanan sebagai .
Langkah 3
Langkah 3.1
Kalikan kedua sisi persamaan dengan .
Langkah 3.2
Sederhanakan kedua sisi dari persamaan tersebut.
Langkah 3.2.1
Sederhanakan sisi kirinya.
Langkah 3.2.1.1
Sederhanakan .
Langkah 3.2.1.1.1
Gabungkan dan .
Langkah 3.2.1.1.2
Batalkan faktor persekutuan dari .
Langkah 3.2.1.1.2.1
Batalkan faktor persekutuan.
Langkah 3.2.1.1.2.2
Tulis kembali pernyataannya.
Langkah 3.2.2
Sederhanakan sisi kanannya.
Langkah 3.2.2.1
Sederhanakan .
Langkah 3.2.2.1.1
Terapkan sifat distributif.
Langkah 3.2.2.1.2
Kalikan dengan .
Langkah 3.3
Ambil logaritma alami dari kedua sisi persamaan untuk menghapus variabel dari eksponennya.
Langkah 3.4
Perluas sisi kirinya.
Langkah 3.4.1
Perluas dengan memindahkan ke luar logaritma.
Langkah 3.4.2
Log alami dari adalah .
Langkah 3.4.3
Kalikan dengan .
Langkah 3.5
Bagi setiap suku pada dengan dan sederhanakan.
Langkah 3.5.1
Bagilah setiap suku di dengan .
Langkah 3.5.2
Sederhanakan sisi kirinya.
Langkah 3.5.2.1
Batalkan faktor persekutuan dari .
Langkah 3.5.2.1.1
Batalkan faktor persekutuan.
Langkah 3.5.2.1.2
Bagilah dengan .
Langkah 4
Sederhanakan konstanta dari integral.
Langkah 5
Gunakan kondisi sarat untuk menemukan nilai dengan mensubstitusikan untuk dan untuk padda .
Langkah 6
Langkah 6.1
Tulis kembali persamaan tersebut sebagai .
Langkah 6.2
Kalikan kedua sisi persamaan dengan .
Langkah 6.3
Sederhanakan kedua sisi dari persamaan tersebut.
Langkah 6.3.1
Sederhanakan sisi kirinya.
Langkah 6.3.1.1
Sederhanakan .
Langkah 6.3.1.1.1
Batalkan faktor persekutuan dari .
Langkah 6.3.1.1.1.1
Batalkan faktor persekutuan.
Langkah 6.3.1.1.1.2
Tulis kembali pernyataannya.
Langkah 6.3.1.1.2
Sederhanakan setiap suku.
Langkah 6.3.1.1.2.1
Menaikkan ke sebarang pangkat positif menghasilkan .
Langkah 6.3.1.1.2.2
Kalikan dengan .
Langkah 6.3.1.1.2.3
Kalikan dengan .
Langkah 6.3.1.1.3
Gabungkan suku balikan dalam .
Langkah 6.3.1.1.3.1
Tambahkan dan .
Langkah 6.3.1.1.3.2
Tambahkan dan .
Langkah 6.3.2
Sederhanakan sisi kanannya.
Langkah 6.3.2.1
Kalikan dengan .
Langkah 6.4
Untuk menyelesaikan , tulis kembali persamaannya menggunakan sifat-sifat logaritma.
Langkah 6.5
Tulis kembali dalam bentuk eksponensial menggunakan aturan dasar logaritma. Jika dan adalah bilangan riil positif dan , maka setara dengan .
Langkah 6.6
Tulis kembali persamaan tersebut sebagai .
Langkah 7
Langkah 7.1
Substitusikan untuk .
Langkah 7.2
Tulis kembali sebagai .
Langkah 7.3
Sederhanakan dengan memindahkan ke dalam logaritma.