Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Diferensialkan terhadap .
Langkah 1.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.3
Evaluasi .
Langkah 1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 1.3.3
Kalikan dengan .
Langkah 1.4
Diferensialkan menggunakan Aturan Konstanta.
Langkah 1.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.4.2
Tambahkan dan .
Langkah 2
Langkah 2.1
Diferensialkan terhadap .
Langkah 2.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 2.3
Turunan dari terhadap adalah .
Langkah 2.4
Diferensialkan menggunakan Aturan Konstanta.
Langkah 2.4.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.4.2
Tambahkan dan .
Langkah 3
Langkah 3.1
Substitusikan ke dan ke .
Langkah 3.2
Karena kedua ruas telah terbukti setara, maka persamaan tersebut adalah identitas trigonometri.
adalah identitas.
adalah identitas.
Langkah 4
Atur agar sama dengan integral .
Langkah 5
Langkah 5.1
Terapkan aturan konstanta.
Langkah 6
Karena integral akan mengandung konstanta integral, kita dapat mengganti dengan .
Langkah 7
Atur .
Langkah 8
Langkah 8.1
Diferensialkan terhadap .
Langkah 8.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 8.3
Evaluasi .
Langkah 8.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 8.3.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 8.3.3
Turunan dari terhadap adalah .
Langkah 8.3.4
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 8.3.5
Tambahkan dan .
Langkah 8.3.6
Gabungkan dan .
Langkah 8.4
Diferensialkan menggunakan aturan fungsi yang menyatakan bahwa turunan adalah .
Langkah 8.5
Susun kembali suku-suku.
Langkah 9
Langkah 9.1
Selesaikan .
Langkah 9.1.1
Pindahkan semua suku yang mengandung variabel ke sisi kiri dari persamaan.
Langkah 9.1.1.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 9.1.1.2
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 9.1.1.3
Gabungkan suku balikan dalam .
Langkah 9.1.1.3.1
Kurangi dengan .
Langkah 9.1.1.3.2
Tambahkan dan .
Langkah 9.1.2
Tambahkan ke kedua sisi persamaan.
Langkah 10
Langkah 10.1
Integralkan kedua sisi .
Langkah 10.2
Evaluasi .
Langkah 10.3
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 10.4
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 10.5
Sederhanakan jawabannya.
Langkah 10.5.1
Tulis kembali sebagai .
Langkah 10.5.2
Sederhanakan.
Langkah 10.5.2.1
Gabungkan dan .
Langkah 10.5.2.2
Hapus faktor persekutuan dari dan .
Langkah 10.5.2.2.1
Faktorkan dari .
Langkah 10.5.2.2.2
Batalkan faktor persekutuan.
Langkah 10.5.2.2.2.1
Faktorkan dari .
Langkah 10.5.2.2.2.2
Batalkan faktor persekutuan.
Langkah 10.5.2.2.2.3
Tulis kembali pernyataannya.
Langkah 10.5.2.2.2.4
Bagilah dengan .
Langkah 11
Substitusikan dalam .
Langkah 12
Langkah 12.1
Terapkan sifat distributif.
Langkah 12.2
Susun kembali faktor-faktor dalam .