Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 1.2
Tulis kembali.
Langkah 2
Langkah 2.1
Diferensialkan terhadap .
Langkah 2.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.4
Kalikan dengan .
Langkah 3
Langkah 3.1
Diferensialkan terhadap .
Langkah 3.2
Diferensialkan.
Langkah 3.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 3.2.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.3
Evaluasi .
Langkah 3.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 3.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 3.3.3
Kalikan dengan .
Langkah 4
Langkah 4.1
Substitusikan ke dan ke .
Langkah 4.2
Karena sisi kiri tidak sama dengan sisi kanan, maka persamaan bukan identitas trigonometri.
bukan identitas.
bukan identitas.
Langkah 5
Langkah 5.1
Substitusikan untuk .
Langkah 5.2
Substitusikan untuk .
Langkah 5.3
Substitusikan untuk .
Langkah 5.3.1
Substitusikan untuk .
Langkah 5.3.2
Sederhanakan pembilangnya.
Langkah 5.3.2.1
Terapkan sifat distributif.
Langkah 5.3.2.2
Kalikan dengan .
Langkah 5.3.2.3
Kalikan dengan .
Langkah 5.3.2.4
Kurangi dengan .
Langkah 5.3.2.5
Faktorkan dari .
Langkah 5.3.2.5.1
Faktorkan dari .
Langkah 5.3.2.5.2
Faktorkan dari .
Langkah 5.3.2.5.3
Faktorkan dari .
Langkah 5.3.3
Faktorkan dari .
Langkah 5.3.3.1
Faktorkan dari .
Langkah 5.3.3.2
Faktorkan dari .
Langkah 5.3.3.3
Faktorkan dari .
Langkah 5.3.4
Hapus faktor persekutuan dari dan .
Langkah 5.3.4.1
Faktorkan dari .
Langkah 5.3.4.2
Faktorkan dari .
Langkah 5.3.4.3
Faktorkan dari .
Langkah 5.3.4.4
Tulis kembali sebagai .
Langkah 5.3.4.5
Batalkan faktor persekutuan.
Langkah 5.3.4.6
Tulis kembali pernyataannya.
Langkah 5.3.5
Kalikan dengan .
Langkah 5.3.6
Pindahkan tanda negatif di depan pecahan.
Langkah 5.4
Temukan faktor integral .
Langkah 6
Langkah 6.1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 6.2
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 6.3
Kalikan dengan .
Langkah 6.4
Integral dari terhadap adalah .
Langkah 6.5
Sederhanakan.
Langkah 6.6
Sederhanakan setiap suku.
Langkah 6.6.1
Sederhanakan dengan memindahkan ke dalam logaritma.
Langkah 6.6.2
Eksponensial dan logaritma adalah fungsi balikan.
Langkah 6.6.3
Hapus nilai mutlak dalam karena eksponensiasi dengan pangkat genap selalu positif.
Langkah 6.6.4
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 7
Langkah 7.1
Kalikan dengan .
Langkah 7.2
Gabungkan dan .
Langkah 7.3
Kalikan dengan .
Langkah 7.4
Kalikan dengan .
Langkah 7.5
Faktorkan dari .
Langkah 7.5.1
Faktorkan dari .
Langkah 7.5.2
Faktorkan dari .
Langkah 7.5.3
Faktorkan dari .
Langkah 7.6
Batalkan faktor persekutuan.
Langkah 7.6.1
Faktorkan dari .
Langkah 7.6.2
Batalkan faktor persekutuan.
Langkah 7.6.3
Tulis kembali pernyataannya.
Langkah 8
Atur agar sama dengan integral .
Langkah 9
Langkah 9.1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 9.2
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 9.3
Hilangkan tanda kurung.
Langkah 9.4
Pindahkan dari penyebut dengan menaikkannya menjadi pangkat .
Langkah 9.5
Kalikan eksponen dalam .
Langkah 9.5.1
Terapkan kaidah pangkat dan perkalian eksponen, .
Langkah 9.5.2
Kalikan dengan .
Langkah 9.6
Menurut Kaidah Pangkat, integral dari terhadap adalah .
Langkah 9.7
Sederhanakan jawabannya.
Langkah 9.7.1
Tulis kembali sebagai .
Langkah 9.7.2
Sederhanakan.
Langkah 9.7.2.1
Kalikan dengan .
Langkah 9.7.2.2
Kalikan dengan .
Langkah 9.7.2.3
Gabungkan dan .
Langkah 10
Karena integral akan mengandung konstanta integral, kita dapat mengganti dengan .
Langkah 11
Atur .
Langkah 12
Langkah 12.1
Diferensialkan terhadap .
Langkah 12.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 12.3
Evaluasi .
Langkah 12.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 12.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 12.3.3
Gabungkan dan .
Langkah 12.3.4
Gabungkan dan .
Langkah 12.4
Diferensialkan menggunakan aturan fungsi yang menyatakan bahwa turunan adalah .
Langkah 12.5
Susun kembali suku-suku.
Langkah 13
Langkah 13.1
Selesaikan .
Langkah 13.1.1
Pindahkan semua suku yang mengandung variabel ke sisi kiri dari persamaan.
Langkah 13.1.1.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 13.1.1.2
Gabungkan pembilang dari penyebut persekutuan.
Langkah 13.1.1.3
Sederhanakan setiap suku.
Langkah 13.1.1.3.1
Terapkan sifat distributif.
Langkah 13.1.1.3.2
Kalikan dengan .
Langkah 13.1.1.4
Gabungkan suku balikan dalam .
Langkah 13.1.1.4.1
Kurangi dengan .
Langkah 13.1.1.4.2
Tambahkan dan .
Langkah 13.1.1.5
Batalkan faktor persekutuan dari .
Langkah 13.1.1.5.1
Batalkan faktor persekutuan.
Langkah 13.1.1.5.2
Bagilah dengan .
Langkah 13.1.2
Tambahkan ke kedua sisi persamaan.
Langkah 14
Langkah 14.1
Integralkan kedua sisi .
Langkah 14.2
Evaluasi .
Langkah 14.3
Terapkan aturan konstanta.
Langkah 15
Substitusikan dalam .