Masukkan soal...
Kalkulus Contoh
Langkah 1
Langkah 1.1
Diferensialkan terhadap .
Langkah 1.2
Diferensialkan.
Langkah 1.2.1
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 1.2.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3
Evaluasi .
Langkah 1.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 1.3.2
Turunan dari terhadap adalah .
Langkah 1.4
Tambahkan dan .
Langkah 2
Langkah 2.1
Diferensialkan terhadap .
Langkah 2.2
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 2.3
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 2.4
Susun kembali.
Langkah 2.4.1
Pindahkan ke sebelah kiri .
Langkah 2.4.2
Susun kembali faktor-faktor dari .
Langkah 3
Langkah 3.1
Substitusikan ke dan ke .
Langkah 3.2
Karena sisi kiri tidak sama dengan sisi kanan, maka persamaan bukan identitas trigonometri.
bukan identitas.
bukan identitas.
Langkah 4
Langkah 4.1
Substitusikan untuk .
Langkah 4.2
Substitusikan untuk .
Langkah 4.3
Substitusikan untuk .
Langkah 4.3.1
Substitusikan untuk .
Langkah 4.3.2
Sederhanakan pembilangnya.
Langkah 4.3.2.1
Faktorkan dari .
Langkah 4.3.2.1.1
Faktorkan dari .
Langkah 4.3.2.1.2
Faktorkan dari .
Langkah 4.3.2.1.3
Faktorkan dari .
Langkah 4.3.2.2
Kalikan dengan .
Langkah 4.3.2.3
Kurangi dengan .
Langkah 4.3.3
Hapus faktor persekutuan dari dan .
Langkah 4.3.3.1
Faktorkan dari .
Langkah 4.3.3.2
Batalkan faktor persekutuan.
Langkah 4.3.3.2.1
Faktorkan dari .
Langkah 4.3.3.2.2
Batalkan faktor persekutuan.
Langkah 4.3.3.2.3
Tulis kembali pernyataannya.
Langkah 4.3.4
Batalkan faktor persekutuan dari .
Langkah 4.3.4.1
Batalkan faktor persekutuan.
Langkah 4.3.4.2
Tulis kembali pernyataannya.
Langkah 4.3.5
Pindahkan tanda negatif di depan pecahan.
Langkah 4.4
Temukan faktor integral .
Langkah 5
Langkah 5.1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 5.2
Integral dari terhadap adalah .
Langkah 5.3
Sederhanakan.
Langkah 5.4
Sederhanakan setiap suku.
Langkah 5.4.1
Sederhanakan dengan memindahkan ke dalam logaritma.
Langkah 5.4.2
Eksponensial dan logaritma adalah fungsi balikan.
Langkah 5.4.3
Tulis kembali pernyataannya menggunakan aturan eksponen negatif .
Langkah 6
Langkah 6.1
Kalikan dengan .
Langkah 6.2
Terapkan sifat distributif.
Langkah 6.3
Batalkan faktor persekutuan dari .
Langkah 6.3.1
Batalkan faktor persekutuan.
Langkah 6.3.2
Tulis kembali pernyataannya.
Langkah 6.4
Batalkan faktor persekutuan dari .
Langkah 6.4.1
Faktorkan dari .
Langkah 6.4.2
Batalkan faktor persekutuan.
Langkah 6.4.3
Tulis kembali pernyataannya.
Langkah 6.5
Kalikan dengan .
Langkah 6.6
Batalkan faktor persekutuan dari .
Langkah 6.6.1
Faktorkan dari .
Langkah 6.6.2
Batalkan faktor persekutuan.
Langkah 6.6.3
Tulis kembali pernyataannya.
Langkah 7
Atur agar sama dengan integral .
Langkah 8
Langkah 8.1
Karena konstan terhadap , pindahkan keluar dari integral.
Langkah 8.2
Integral dari terhadap adalah .
Langkah 8.3
Sederhanakan.
Langkah 9
Karena integral akan mengandung konstanta integral, kita dapat mengganti dengan .
Langkah 10
Atur .
Langkah 11
Langkah 11.1
Diferensialkan terhadap .
Langkah 11.2
Menurut Kaidah Penjumlahan, turunan dari terhadap adalah .
Langkah 11.3
Evaluasi .
Langkah 11.3.1
Karena konstan terhadap , turunan dari terhadap adalah .
Langkah 11.3.2
Diferensialkan menggunakan Kaidah Pangkat yang menyatakan bahwa adalah di mana .
Langkah 11.3.3
Pindahkan ke sebelah kiri .
Langkah 11.4
Diferensialkan menggunakan aturan fungsi yang menyatakan bahwa turunan adalah .
Langkah 11.5
Susun kembali suku-suku.
Langkah 12
Langkah 12.1
Pindahkan semua suku yang tidak mengandung ke sisi kanan dari persamaan.
Langkah 12.1.1
Kurangkan dari kedua sisi persamaan tersebut.
Langkah 12.1.2
Gabungkan suku balikan dalam .
Langkah 12.1.2.1
Kurangi dengan .
Langkah 12.1.2.2
Tambahkan dan .
Langkah 13
Langkah 13.1
Integralkan kedua sisi .
Langkah 13.2
Evaluasi .
Langkah 13.3
Terapkan aturan konstanta.
Langkah 14
Substitusikan dalam .