Contoh
Langkah 1
Kernel dari transformasi adalah vektor yang membuat transformasinya sama dengan vektor nol (prabayangan dari transformasi).
Langkah 2
Buat sistem persamaan dari persamaan vektor.
Langkah 3
Write the system as a matrix.
Langkah 4
Langkah 4.1
Perform the row operation to make the entry at a .
Langkah 4.1.1
Perform the row operation to make the entry at a .
Langkah 4.1.2
Sederhanakan .
Langkah 4.2
Perform the row operation to make the entry at a .
Langkah 4.2.1
Perform the row operation to make the entry at a .
Langkah 4.2.2
Sederhanakan .
Langkah 4.3
Multiply each element of by to make the entry at a .
Langkah 4.3.1
Multiply each element of by to make the entry at a .
Langkah 4.3.2
Sederhanakan .
Langkah 4.4
Perform the row operation to make the entry at a .
Langkah 4.4.1
Perform the row operation to make the entry at a .
Langkah 4.4.2
Sederhanakan .
Langkah 4.5
Multiply each element of by to make the entry at a .
Langkah 4.5.1
Multiply each element of by to make the entry at a .
Langkah 4.5.2
Sederhanakan .
Langkah 4.6
Perform the row operation to make the entry at a .
Langkah 4.6.1
Perform the row operation to make the entry at a .
Langkah 4.6.2
Sederhanakan .
Langkah 4.7
Perform the row operation to make the entry at a .
Langkah 4.7.1
Perform the row operation to make the entry at a .
Langkah 4.7.2
Sederhanakan .
Langkah 4.8
Perform the row operation to make the entry at a .
Langkah 4.8.1
Perform the row operation to make the entry at a .
Langkah 4.8.2
Sederhanakan .
Langkah 5
Use the result matrix to declare the final solution to the system of equations.
Langkah 6
Write a solution vector by solving in terms of the free variables in each row.
Langkah 7
Write as a solution set.
Langkah 8
Kernel dari adalah subruang .