Prakalkulus Contoh

Menentukan Persamaan Menggunakan Rumus Titik Kemiringan
(0,1)(0,1) , (1,0)(1,0)
Langkah 1
Tentukan gradien garis antara (0,1)(0,1) dan (1,0)(1,0) menggunakan m=y2-y1x2-x1m=y2y1x2x1, yaitu beda dari yy per beda dari xx.
Ketuk untuk lebih banyak langkah...
Langkah 1.1
Gradien sama dengan perubahan pada yy per perubahan pada xx, atau naik per geser.
m=perubahan pada yperubahan pada xm=perubahan pada yperubahan pada x
Langkah 1.2
Perubahan pada xx sama dengan beda pada koordinat x (juga disebut pergeseran), dan perubahan pada yy sama dengan beda di koordinat y (juga disebut kenaikan).
m=y2-y1x2-x1m=y2y1x2x1
Langkah 1.3
Substitusikan ke dalam nilai-nilai dari xx dan yy dalam persamaannya untuk menghitung gradien.
m=0-(1)1-(0)m=0(1)1(0)
Langkah 1.4
Sederhanakan.
Ketuk untuk lebih banyak langkah...
Langkah 1.4.1
Sederhanakan pembilangnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.4.1.1
Kalikan -11 dengan 11.
m=0-11-(0)m=011(0)
Langkah 1.4.1.2
Kurangi 11 dengan 00.
m=-11-(0)m=11(0)
m=-11-(0)m=11(0)
Langkah 1.4.2
Sederhanakan penyebutnya.
Ketuk untuk lebih banyak langkah...
Langkah 1.4.2.1
Kalikan -11 dengan 00.
m=-11+0m=11+0
Langkah 1.4.2.2
Tambahkan 11 dan 00.
m=-11m=11
m=-11m=11
Langkah 1.4.3
Bagilah -11 dengan 11.
m=-1m=1
m=-1m=1
m=-1m=1
Langkah 2
Gunakan gradien -11 dan titik yang diberikan (0,1)(0,1) untuk menggantikan x1x1 dan y1y1 dalam bentuk titik kemiringan y-y1=m(x-x1)yy1=m(xx1), yang diturunkan dari persamaan gradien m=y2-y1x2-x1m=y2y1x2x1.
y-(1)=-1(x-(0))y(1)=1(x(0))
Langkah 3
Sederhanakan persamaannya dan pastikan tetap dalam bentuk titik kemiringan.
y-1=-1(x+0)y1=1(x+0)
Langkah 4
Selesaikan yy.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Sederhanakan -1(x+0)1(x+0).
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1
Tambahkan xx dan 00.
y-1=-1xy1=1x
Langkah 4.1.2
Tulis kembali -1x1x sebagai -xx.
y-1=-xy1=x
y-1=-xy1=x
Langkah 4.2
Tambahkan 11 ke kedua sisi persamaan.
y=-x+1y=x+1
y=-x+1y=x+1
Langkah 5
Sebutkan persamaannya dalam bentuk yang berbeda.
Bentuk perpotongan gradien:
y=-x+1y=x+1
Bentuk titik kemiringan:
y-1=-1(x+0)y1=1(x+0)
Langkah 6
Masukkan Soal
using Amazon.Auth.AccessControlPolicy;
Mathway memerlukan javascript dan browser modern.
 [x2  12  π  xdx ]  x2  12  π  xdx  
AmazonPay