Aljabar Contoh
[440231123]
Langkah 1
Langkah 1.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Langkah 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Langkah 1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Langkah 1.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|3123|
Langkah 1.1.4
Multiply element a11 by its cofactor.
4|3123|
Langkah 1.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|2113|
Langkah 1.1.6
Multiply element a12 by its cofactor.
-4|2113|
Langkah 1.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|2312|
Langkah 1.1.8
Multiply element a13 by its cofactor.
0|2312|
Langkah 1.1.9
Add the terms together.
4|3123|-4|2113|+0|2312|
4|3123|-4|2113|+0|2312|
Langkah 1.2
Kalikan 0 dengan |2312|.
4|3123|-4|2113|+0
Langkah 1.3
Evaluasi |3123|.
Langkah 1.3.1
Determinan dari matriks 2×2 dapat dicari menggunakan rumus |abcd|=ad-cb.
4(3⋅3-2⋅1)-4|2113|+0
Langkah 1.3.2
Sederhanakan determinannya.
Langkah 1.3.2.1
Sederhanakan setiap suku.
Langkah 1.3.2.1.1
Kalikan 3 dengan 3.
4(9-2⋅1)-4|2113|+0
Langkah 1.3.2.1.2
Kalikan -2 dengan 1.
4(9-2)-4|2113|+0
4(9-2)-4|2113|+0
Langkah 1.3.2.2
Kurangi 2 dengan 9.
4⋅7-4|2113|+0
4⋅7-4|2113|+0
4⋅7-4|2113|+0
Langkah 1.4
Evaluasi |2113|.
Langkah 1.4.1
Determinan dari matriks 2×2 dapat dicari menggunakan rumus |abcd|=ad-cb.
4⋅7-4(2⋅3-1⋅1)+0
Langkah 1.4.2
Sederhanakan determinannya.
Langkah 1.4.2.1
Sederhanakan setiap suku.
Langkah 1.4.2.1.1
Kalikan 2 dengan 3.
4⋅7-4(6-1⋅1)+0
Langkah 1.4.2.1.2
Kalikan -1 dengan 1.
4⋅7-4(6-1)+0
4⋅7-4(6-1)+0
Langkah 1.4.2.2
Kurangi 1 dengan 6.
4⋅7-4⋅5+0
4⋅7-4⋅5+0
4⋅7-4⋅5+0
Langkah 1.5
Sederhanakan determinannya.
Langkah 1.5.1
Sederhanakan setiap suku.
Langkah 1.5.1.1
Kalikan 4 dengan 7.
28-4⋅5+0
Langkah 1.5.1.2
Kalikan -4 dengan 5.
28-20+0
28-20+0
Langkah 1.5.2
Kurangi 20 dengan 28.
8+0
Langkah 1.5.3
Tambahkan 8 dan 0.
8
8
8
Langkah 2
Since the determinant is non-zero, the inverse exists.
Langkah 3
Set up a 3×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[440100231010123001]
Langkah 4
Langkah 4.1
Multiply each element of R1 by 14 to make the entry at 1,1 a 1.
Langkah 4.1.1
Multiply each element of R1 by 14 to make the entry at 1,1 a 1.
[444404140404231010123001]
Langkah 4.1.2
Sederhanakan R1.
[1101400231010123001]
[1101400231010123001]
Langkah 4.2
Perform the row operation R2=R2-2R1 to make the entry at 2,1 a 0.
Langkah 4.2.1
Perform the row operation R2=R2-2R1 to make the entry at 2,1 a 0.
[11014002-2⋅13-2⋅11-2⋅00-2(14)1-2⋅00-2⋅0123001]
Langkah 4.2.2
Sederhanakan R2.
[1101400011-1210123001]
[1101400011-1210123001]
Langkah 4.3
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
Langkah 4.3.1
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
[1101400011-12101-12-13-00-140-01-0]
Langkah 4.3.2
Sederhanakan R3.
[1101400011-1210013-1401]
[1101400011-1210013-1401]
Langkah 4.4
Perform the row operation R3=R3-R2 to make the entry at 3,2 a 0.
Langkah 4.4.1
Perform the row operation R3=R3-R2 to make the entry at 3,2 a 0.
[1101400011-12100-01-13-1-14+120-11-0]
Langkah 4.4.2
Sederhanakan R3.
[1101400011-121000214-11]
[1101400011-121000214-11]
Langkah 4.5
Multiply each element of R3 by 12 to make the entry at 3,3 a 1.
Langkah 4.5.1
Multiply each element of R3 by 12 to make the entry at 3,3 a 1.
[1101400011-1210020222142-1212]
Langkah 4.5.2
Sederhanakan R3.
[1101400011-121000118-1212]
[1101400011-121000118-1212]
Langkah 4.6
Perform the row operation R2=R2-R3 to make the entry at 2,3 a 0.
Langkah 4.6.1
Perform the row operation R2=R2-R3 to make the entry at 2,3 a 0.
[11014000-01-01-1-12-181+120-1200118-1212]
Langkah 4.6.2
Sederhanakan R2.
[1101400010-5832-1200118-1212]
[1101400010-5832-1200118-1212]
Langkah 4.7
Perform the row operation R1=R1-R2 to make the entry at 1,2 a 0.
Langkah 4.7.1
Perform the row operation R1=R1-R2 to make the entry at 1,2 a 0.
[1-01-10-014+580-320+12010-5832-1200118-1212]
Langkah 4.7.2
Sederhanakan R1.
[10078-3212010-5832-1200118-1212]
[10078-3212010-5832-1200118-1212]
[10078-3212010-5832-1200118-1212]
Langkah 5
The right half of the reduced row echelon form is the inverse.
[78-3212-5832-1218-1212]