Aljabar Contoh

S([abc])=[a-2b-c3a-b+2ca+b+2c]
Langkah 1
Kernel dari transformasi adalah vektor yang membuat transformasinya sama dengan vektor nol (prabayangan dari transformasi).
[a-2b-c3a-b+2ca+b+2c]=0
Langkah 2
Buat sistem persamaan dari persamaan vektor.
a-2b-c=0
3a-b+2c=0
a+b+2c=0
Langkah 3
Write the system as a matrix.
[1-2-103-1201120]
Langkah 4
Tentukan bentuk eselon baris yang dikurangi.
Ketuk untuk lebih banyak langkah...
Langkah 4.1
Perform the row operation R2=R2-3R1 to make the entry at 2,1 a 0.
Ketuk untuk lebih banyak langkah...
Langkah 4.1.1
Perform the row operation R2=R2-3R1 to make the entry at 2,1 a 0.
[1-2-103-31-1-3-22-3-10-301120]
Langkah 4.1.2
Sederhanakan R2.
[1-2-1005501120]
[1-2-1005501120]
Langkah 4.2
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
Ketuk untuk lebih banyak langkah...
Langkah 4.2.1
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
[1-2-1005501-11+22+10-0]
Langkah 4.2.2
Sederhanakan R3.
[1-2-1005500330]
[1-2-1005500330]
Langkah 4.3
Multiply each element of R2 by 15 to make the entry at 2,2 a 1.
Ketuk untuk lebih banyak langkah...
Langkah 4.3.1
Multiply each element of R2 by 15 to make the entry at 2,2 a 1.
[1-2-10055555050330]
Langkah 4.3.2
Sederhanakan R2.
[1-2-1001100330]
[1-2-1001100330]
Langkah 4.4
Perform the row operation R3=R3-3R2 to make the entry at 3,2 a 0.
Ketuk untuk lebih banyak langkah...
Langkah 4.4.1
Perform the row operation R3=R3-3R2 to make the entry at 3,2 a 0.
[1-2-1001100-303-313-310-30]
Langkah 4.4.2
Sederhanakan R3.
[1-2-1001100000]
[1-2-1001100000]
Langkah 4.5
Perform the row operation R1=R1+2R2 to make the entry at 1,2 a 0.
Ketuk untuk lebih banyak langkah...
Langkah 4.5.1
Perform the row operation R1=R1+2R2 to make the entry at 1,2 a 0.
[1+20-2+21-1+210+2001100000]
Langkah 4.5.2
Sederhanakan R1.
[101001100000]
[101001100000]
[101001100000]
Langkah 5
Use the result matrix to declare the final solution to the system of equations.
a+c=0
b+c=0
0=0
Langkah 6
Write a solution vector by solving in terms of the free variables in each row.
[abc]=[-c-cc]
Langkah 7
Write the solution as a linear combination of vectors.
[abc]=c[-1-11]
Langkah 8
Write as a solution set.
{c[-1-11]|cR}
Langkah 9
The solution is the set of vectors created from the free variables of the system.
{[-1-11]}
Langkah 10
Kernel dari S adalah subruang {[-1-11]}.
K(S)={[-1-11]}
Masukkan Soal
using Amazon.Auth.AccessControlPolicy;
Mathway memerlukan javascript dan browser modern.
 [x2  12  π  xdx ] 
AmazonPay