Aljabar Contoh
2x2+x-3 , x-1
Langkah 1
Langkah 1.1
Tempatkan bilangan yang mewakili pembagi dan bilangan yang dibagi ke dalam konfigurasi yang seperti pembagian.
1 | 2 | 1 | -3 |
Langkah 1.2
Bilangan pertama dalam bilangan yang dibagi (2) dimasukkan ke dalam posisi pertama dari daerah hasil (di bawah garis datar).
1 | 2 | 1 | -3 |
2 |
Langkah 1.3
Kalikan entri terbaru dalam hasil (2) dengan pembagi (1) dan tempatkan hasil (2) di bawah suku berikutnya dalam bilangan yang dibagi (1).
1 | 2 | 1 | -3 |
2 | |||
2 |
Langkah 1.4
Jumlahkan hasil dari perkalian dan bilangan dari pembagi, lalu letakkan hasilnya di posisi berikutnya pada garis hasil.
1 | 2 | 1 | -3 |
2 | |||
2 | 3 |
Langkah 1.5
Kalikan entri terbaru dalam hasil (3) dengan pembagi (1) dan tempatkan hasil (3) di bawah suku berikutnya dalam bilangan yang dibagi (-3).
1 | 2 | 1 | -3 |
2 | 3 | ||
2 | 3 |
Langkah 1.6
Jumlahkan hasil dari perkalian dan bilangan dari pembagi, lalu letakkan hasilnya di posisi berikutnya pada garis hasil.
1 | 2 | 1 | -3 |
2 | 3 | ||
2 | 3 | 0 |
Langkah 1.7
Semua bilangan, kecuali yang terakhir, menjadi koefisien dari polinomial hasil bagi. Nilai terakhir pada garis hasil adalah sisanya.
(2)x+3
Langkah 1.8
Sederhanakan polinomial hasil baginya.
2x+3
2x+3
Langkah 2
Sisa dari pembagian 2x2+x-3x-1 adalah 0, yang berarti x-1 adalah faktor untuk 2x2+x-3.
x-1 adalah faktor untuk 2x2+x-3
Langkah 3
Faktor akhirnya adalah satu-satunya faktor yang tersisa dari pembagian sintetik.
2x+3
Langkah 4
Polinomial yang difaktorkan yaitu (x-1)(2x+3).
(x-1)(2x+3)