Aljabar Contoh

Menentukan Bidang yang Melalui (1,2,3), (2,5,6) yang Sejajar dengan Garis yang Melalui (2,9,7), (3,3,3)
, , ,
Langkah 1
Jika diketahui titik dan , tentukan bidang datar yang mengandung titik dan yang sejajar dengan garis .
Langkah 2
Pertama, hitung arah vektor dari garis melalui titik dan . Ini dapat dilakukan dengan mengambil nilai koordinat titik dan menguranginya dengan titik .
Langkah 3
Ganti nilai , , dan , kemudian sederhanakan untuk memperoleh vektor arah untuk garis .
Langkah 4
Hitung vektor arah dari sebuah garis melalui titik dan menggunakan metode yang sama.
Langkah 5
Ganti nilai , , dan , kemudian sederhanakan untuk memperoleh vektor arah untuk garis .
Langkah 6
Bidang penyelesaiannya akan memuat garis yang mengandung titik-titik dan , serta dengan vektor arah . Agar bidang ini sejajar dengan garis , temukan vektor normal pada bidang yang juga ortogonal ke vektor arah garis . Hitung vektor normalnya dengan menghitung hasil kali silang x dengan menentukan determinan matriks .
Langkah 7
Hitung determinan.
Ketuk untuk lebih banyak langkah...
Langkah 7.1
Pilih baris atau kolom dengan elemen paling banyak. Jika tidak ada elemen , pilih sebarang baris atau kolom. Kalikan setiap elemen di baris dengan kofaktornya dan tambahkan.
Ketuk untuk lebih banyak langkah...
Langkah 7.1.1
Pertimbangkan grafik tanda yang sesuai.
Langkah 7.1.2
Kofaktornya minor dengan tanda yang diubah jika indeksnya cocok dengan posisi di grafik tanda.
Langkah 7.1.3
Minor untuk adalah determinan dengan baris dan kolom dihapus.
Langkah 7.1.4
Kalikan elemen dengan kofaktornya.
Langkah 7.1.5
Minor untuk adalah determinan dengan baris dan kolom dihapus.
Langkah 7.1.6
Kalikan elemen dengan kofaktornya.
Langkah 7.1.7
Minor untuk adalah determinan dengan baris dan kolom dihapus.
Langkah 7.1.8
Kalikan elemen dengan kofaktornya.
Langkah 7.1.9
Tambahkan semua sukunya.
Langkah 7.2
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 7.2.1
Determinan dari matriks dapat dicari menggunakan rumus .
Langkah 7.2.2
Sederhanakan determinannya.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 7.2.2.1.1
Kalikan dengan .
Langkah 7.2.2.1.2
Kalikan .
Ketuk untuk lebih banyak langkah...
Langkah 7.2.2.1.2.1
Kalikan dengan .
Langkah 7.2.2.1.2.2
Kalikan dengan .
Langkah 7.2.2.2
Tambahkan dan .
Langkah 7.3
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 7.3.1
Determinan dari matriks dapat dicari menggunakan rumus .
Langkah 7.3.2
Sederhanakan determinannya.
Ketuk untuk lebih banyak langkah...
Langkah 7.3.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 7.3.2.1.1
Kalikan dengan .
Langkah 7.3.2.1.2
Kalikan dengan .
Langkah 7.3.2.2
Kurangi dengan .
Langkah 7.4
Evaluasi .
Ketuk untuk lebih banyak langkah...
Langkah 7.4.1
Determinan dari matriks dapat dicari menggunakan rumus .
Langkah 7.4.2
Sederhanakan determinannya.
Ketuk untuk lebih banyak langkah...
Langkah 7.4.2.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 7.4.2.1.1
Kalikan dengan .
Langkah 7.4.2.1.2
Kalikan dengan .
Langkah 7.4.2.2
Kurangi dengan .
Langkah 7.5
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 7.5.1
Pindahkan ke sebelah kiri .
Langkah 7.5.2
Kalikan dengan .
Langkah 8
Selesaikan pernyataan pada titik karena berada pada bidang datar. Ini digunakan untuk menghitung konstanta dalam persamaan untuk bidang datar.
Ketuk untuk lebih banyak langkah...
Langkah 8.1
Sederhanakan setiap suku.
Ketuk untuk lebih banyak langkah...
Langkah 8.1.1
Kalikan dengan .
Langkah 8.1.2
Kalikan dengan .
Langkah 8.1.3
Kalikan dengan .
Langkah 8.2
Sederhanakan dengan menambahkan dan mengurangkan.
Ketuk untuk lebih banyak langkah...
Langkah 8.2.1
Tambahkan dan .
Langkah 8.2.2
Kurangi dengan .
Langkah 9
Tambahkan konstanta untuk mencari persamaan bidang datar agar menjadi .
Langkah 10
Kalikan dengan .
Masukkan Soal
Mathway memerlukan javascript dan browser modern.