प्री-कैलकुलस उदाहरण

योगफल का मूल्यांकन कीजिये k=0 से 12 तक 4(2^(k-1)) का योग
चरण 1
एक परिमित ज्यामितीय श्रृंखला का योग सूत्र का उपयोग करके पता किया जा सकता है जहां पहला पद है और क्रमिक पदों के बीच का अनुपात है.
चरण 2
सूत्र में प्लग इन करके और सरलीकरण करके क्रमागत पदों का अनुपात ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
और को के सूत्र में प्रतिस्थापित करें.
चरण 2.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.1.2
व्यंजक को फिर से लिखें.
चरण 2.2.2
और के उभयनिष्ठ गुणनखंड को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.1
में से का गुणनखंड करें.
चरण 2.2.2.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.2.2.1
से गुणा करें.
चरण 2.2.2.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.2.2.2.3
व्यंजक को फिर से लिखें.
चरण 2.2.2.2.4
को से विभाजित करें.
चरण 2.2.3
और जोड़ें.
चरण 2.2.4
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.4.1
वितरण गुणधर्म लागू करें.
चरण 2.2.4.2
को से गुणा करें.
चरण 2.2.5
में से घटाएं.
चरण 2.2.6
और जोड़ें.
चरण 2.2.7
घातांक का मान ज्ञात करें.
चरण 3
निम्न परिबंध में प्रतिस्थापित करके और सरलीकरण करके श्रृंखला का पहला पद ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
के स्थान पर में प्रतिस्थापित करें.
चरण 3.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
में से घटाएं.
चरण 3.2.2
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 3.2.3
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.3.1
में से का गुणनखंड करें.
चरण 3.2.3.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.3.3
व्यंजक को फिर से लिखें.
चरण 4
योग सूत्र में अनुपात, प्रथम पद और पदों की संख्या के मान को प्रतिस्थापित करें.
चरण 5
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1.1
को के घात तक बढ़ाएं.
चरण 5.1.2
को से गुणा करें.
चरण 5.1.3
में से घटाएं.
चरण 5.2
भाजक को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1
को से गुणा करें.
चरण 5.2.2
में से घटाएं.
चरण 5.3
को से विभाजित करें.
चरण 5.4
को से गुणा करें.