प्री-कैलकुलस उदाहरण

xを解きます x-2+ के लघुगणक 9-x<1 के लघुगणक
चरण 1
असमानता को समानता में बदलें.
चरण 2
समीकरण को हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 2.1.1
लघुगणक की गुणनफल गुणधर्म, का उपयोग करें.
चरण 2.1.2
FOIL विधि का उपयोग करके का प्रसार करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.2.1
वितरण गुणधर्म लागू करें.
चरण 2.1.2.2
वितरण गुणधर्म लागू करें.
चरण 2.1.2.3
वितरण गुणधर्म लागू करें.
चरण 2.1.3
समान पदों को सरल और संयोजित करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.3.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.3.1.1
को के बाईं ओर ले जाएं.
चरण 2.1.3.1.2
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 2.1.3.1.3
घातांक जोड़कर को से गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1.3.1.3.1
ले जाएं.
चरण 2.1.3.1.3.2
को से गुणा करें.
चरण 2.1.3.1.4
को से गुणा करें.
चरण 2.1.3.1.5
को से गुणा करें.
चरण 2.1.3.2
और जोड़ें.
चरण 2.2
लघुगणक की परिभाषा का उपयोग करते हुए को घातीय रूप में फिर से लिखें. अगर और धनात्मक वास्तविक संख्याएं हैं और , तो के बराबर है.
चरण 2.3
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
समीकरण को के रूप में फिर से लिखें.
चरण 2.3.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 2.3.3
में से घटाएं.
चरण 2.3.4
समीकरण के बाएँ पक्ष का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.4.1
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.4.1.1
और को पुन: क्रमित करें.
चरण 2.3.4.1.2
में से का गुणनखंड करें.
चरण 2.3.4.1.3
में से का गुणनखंड करें.
चरण 2.3.4.1.4
को के रूप में फिर से लिखें.
चरण 2.3.4.1.5
में से का गुणनखंड करें.
चरण 2.3.4.1.6
में से का गुणनखंड करें.
चरण 2.3.4.2
गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.4.2.1
AC विधि का उपयोग करके का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.4.2.1.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 2.3.4.2.1.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 2.3.4.2.2
अनावश्यक कोष्ठक हटा दें.
चरण 2.3.5
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 2.3.6
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.6.1
को के बराबर सेट करें.
चरण 2.3.6.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.3.7
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.7.1
को के बराबर सेट करें.
चरण 2.3.7.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 2.3.8
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 3
का डोमेन ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
यह पता लगाने के लिए कि व्यंजक कहाँ परिभाषित है, तर्क को से बड़ा में सेट करें.
चरण 3.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
असमानता को समीकरण में बदलें.
चरण 3.2.2
समीकरण के बाएँ पक्ष का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.1
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.1.1
और को पुन: क्रमित करें.
चरण 3.2.2.1.2
में से का गुणनखंड करें.
चरण 3.2.2.1.3
में से का गुणनखंड करें.
चरण 3.2.2.1.4
को के रूप में फिर से लिखें.
चरण 3.2.2.1.5
में से का गुणनखंड करें.
चरण 3.2.2.1.6
में से का गुणनखंड करें.
चरण 3.2.2.2
गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.2.1
AC विधि का उपयोग करके का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.2.2.1.1
के स्वरूप पर विचार करें. पूर्णांकों का एक ऐसा युग्म ज्ञात कीजिए जिसका गुणनफल है और जिसका योग है और इस स्थिति में जिसका गुणनफल है और जिसका योग है.
चरण 3.2.2.2.1.2
इन पूर्णांकों का प्रयोग करते हुए गुणनखंड लिखें.
चरण 3.2.2.2.2
अनावश्यक कोष्ठक हटा दें.
चरण 3.2.3
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 3.2.4
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.4.1
को के बराबर सेट करें.
चरण 3.2.4.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3.2.5
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.5.1
को के बराबर सेट करें.
चरण 3.2.5.2
समीकरण के दोनों पक्षों में जोड़ें.
चरण 3.2.6
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 3.2.7
परीक्षण अंतराल बनाने के लिए प्रत्येक मूल का प्रयोग करें.
चरण 3.2.8
प्रत्येक अंतराल से एक परीक्षण मान चुनें और यह निर्धारित करने के लिए कि कौन से अंतराल असमानता को संतुष्ट करते हैं, इस मान को मूल असमानता में प्लग करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.8.1
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 3.2.8.1.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 3.2.8.1.2
मूल असमानता में को से बदलें.
चरण 3.2.8.1.3
बाईं ओर दाईं ओर से बड़ा नहीं है, जिसका अर्थ है कि दिया गया कथन गलत है.
False
False
चरण 3.2.8.2
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 3.2.8.2.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 3.2.8.2.2
मूल असमानता में को से बदलें.
चरण 3.2.8.2.3
बाईं ओर दाईं ओर से बड़ा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
True
True
चरण 3.2.8.3
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 3.2.8.3.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 3.2.8.3.2
मूल असमानता में को से बदलें.
चरण 3.2.8.3.3
बाईं ओर दाईं ओर से बड़ा नहीं है, जिसका अर्थ है कि दिया गया कथन गलत है.
False
False
चरण 3.2.8.4
यह निर्धारित करने के लिए अंतराल की तुलना करें कि कौन से तत्व मूल असमानता को संतुष्ट करते हैं.
गलत
सही
गलत
गलत
सही
गलत
चरण 3.2.9
हल में सभी सच्चे अंतराल होते हैं.
चरण 3.3
डोमेन के सभी मान हैं जो व्यंजक को परिभाषित करते हैं.
चरण 4
परीक्षण अंतराल बनाने के लिए प्रत्येक मूल का प्रयोग करें.
चरण 5
प्रत्येक अंतराल से एक परीक्षण मान चुनें और यह निर्धारित करने के लिए कि कौन से अंतराल असमानता को संतुष्ट करते हैं, इस मान को मूल असमानता में प्लग करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 5.1.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 5.1.2
मूल असमानता में को से बदलें.
चरण 5.1.3
निर्धारित करें कि क्या असमानता सत्य है.
और स्टेप्स के लिए टैप करें…
चरण 5.1.3.1
समीकरण को हल नहीं किया जा सकता क्योंकि यह अपरिभाषित है.
चरण 5.1.3.2
बाईं ओर का कोई हल नहीं है, जिसका अर्थ है कि दिया गया कथन असत्य है.
False
False
False
चरण 5.2
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 5.2.2
मूल असमानता में को से बदलें.
चरण 5.2.3
बाईं ओर दाईं ओर से छोटा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
True
True
चरण 5.3
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 5.3.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 5.3.2
मूल असमानता में को से बदलें.
चरण 5.3.3
बाईं ओर दाईं ओर से कम नहीं है, जिसका अर्थ है कि दिया गया कथन गलत है.
False
False
चरण 5.4
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 5.4.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 5.4.2
मूल असमानता में को से बदलें.
चरण 5.4.3
बाईं ओर दाईं ओर से छोटा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
True
True
चरण 5.5
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
और स्टेप्स के लिए टैप करें…
चरण 5.5.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 5.5.2
मूल असमानता में को से बदलें.
चरण 5.5.3
निर्धारित करें कि क्या असमानता सत्य है.
और स्टेप्स के लिए टैप करें…
चरण 5.5.3.1
समीकरण को हल नहीं किया जा सकता क्योंकि यह अपरिभाषित है.
चरण 5.5.3.2
बाईं ओर का कोई हल नहीं है, जिसका अर्थ है कि दिया गया कथन असत्य है.
False
False
False
चरण 5.6
यह निर्धारित करने के लिए अंतराल की तुलना करें कि कौन से तत्व मूल असमानता को संतुष्ट करते हैं.
गलत
सही
गलत
सही
गलत
गलत
सही
गलत
सही
गलत
चरण 6
हल में सभी सच्चे अंतराल होते हैं.
या
चरण 7
परिणाम कई रूपों में दिखाया जा सकता है.
असमानता रूप:
मध्यवर्ती संकेतन:
चरण 8