समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
को के रूप में फिर से लिखें.
चरण 2
चरण 2.1
न्यूमेरेटर की सीमा और भाजक की सीमा का मान ज्ञात करें.
चरण 2.1.1
न्यूमेरेटर की सीमा और भाजक की सीमा लें.
चरण 2.1.2
जैसे-जैसे दाईं ओर से की ओर एप्रोच करता है, बिना किसी सीमा के कम हो जाता है.
चरण 2.1.3
चूँकि न्यूमेरेटर एक स्थिरांक है और भाजक की ओर एप्रोच करता है, जब दाईं ओर से की ओर एप्रोच करता है, तो भिन्न अनंत की ओर एप्रोच करता है.
चरण 2.1.4
अनंत से विभाजित अनंत परिणाम अपरिभाषित होता है.
अपरिभाषित
चरण 2.2
चूंकि अनिश्चित रूप का है, इसलिए L'Hospital' का नियम लागू करें. L'Hospital' के नियम में कहा गया है कि कार्यों के भागफल की सीमा उनके व्युत्पन्न के भागफल की सीमा के बराबर है.
चरण 2.3
न्यूमेरेटर और भाजक का व्युत्पन्न पता करें.
चरण 2.3.1
न्यूमेरेटर और भाजक में अंतर करें.
चरण 2.3.2
चेन रूल का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ और है.
चरण 2.3.2.1
चेन रूल लागू करने के लिए, को के रूप में सेट करें.
चरण 2.3.2.2
के संबंध में का व्युत्पन्न है.
चरण 2.3.2.3
की सभी घटनाओं को से बदलें.
चरण 2.3.3
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.3.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.5
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.6
सरल करें.
चरण 2.3.6.1
के गुणनखंडों को फिर से क्रमित करें.
चरण 2.3.6.2
में से का गुणनखंड करें.
चरण 2.3.6.2.1
को के घात तक बढ़ाएं.
चरण 2.3.6.2.2
में से का गुणनखंड करें.
चरण 2.3.6.2.3
में से का गुणनखंड करें.
चरण 2.3.6.2.4
में से का गुणनखंड करें.
चरण 2.3.6.3
को से गुणा करें.
चरण 2.3.7
को के रूप में फिर से लिखें.
चरण 2.3.8
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.9
ऋणात्मक घातांक नियम का प्रयोग करके व्यंजक को फिर से लिखें.
चरण 2.4
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 2.5
और को मिलाएं.
चरण 2.6
और के उभयनिष्ठ गुणनखंड को रद्द करें.
चरण 2.6.1
में से का गुणनखंड करें.
चरण 2.6.2
उभयनिष्ठ गुणनखंडों को रद्द करें.
चरण 2.6.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 2.6.2.2
व्यंजक को फिर से लिखें.
चरण 2.7
गुणनखंडों को में पुन: क्रमित करें.
चरण 3
चरण 3.1
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 3.2
जैसे ही की ओर आता है, सीमा भागफल नियम का उपयोग करके सीमा को विभाजित करें.
चरण 3.3
जैसे ही की ओर आ रहा है, उत्पाद सीमा नियम का उपयोग करके सीमा को विभाजित करें.
चरण 3.4
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 3.5
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 3.6
पद को सीमा से बाभाजक ले जाएं क्योंकि यह के संबंध में स्थिर है.
चरण 3.7
जैसे-जैसे के करीब पहुंचता है, सीमा पर योग नियम का उपयोग करके सीमा को विभाजित करें.
चरण 3.8
की सीमा का मान ज्ञात करें जो के पर पहुँचने पर स्थिर होती है.
चरण 4
चरण 4.1
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 4.2
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 4.3
के लिए को प्रतिस्थापित करके की सीमा का मान ज्ञात करें.
चरण 5
चरण 5.1
को से गुणा करें.
चरण 5.2
और जोड़ें.
चरण 5.3
को से विभाजित करें.
चरण 5.4
को से गुणा करें.