समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
चरण 1.1
के लिए हल करें.
चरण 1.1.1
प्रत्येक पद को सरल करें.
चरण 1.1.1.1
से गुणा करें.
चरण 1.1.1.2
में से का गुणनखंड करें.
चरण 1.1.1.3
अलग-अलग भिन्न
चरण 1.1.1.4
को से विभाजित करें.
चरण 1.1.1.5
को से विभाजित करें.
चरण 1.1.2
समीकरण के दोनों पक्षों से घटाएं.
चरण 1.2
दोनों पक्षों को से गुणा करें.
चरण 1.3
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.3.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.3.2
व्यंजक को फिर से लिखें.
चरण 1.4
समीकरण को फिर से लिखें.
चरण 2
चरण 2.1
प्रत्येक पक्ष का एक समाकलन सेट करें.
चरण 2.2
बाएं पक्ष का समाकलन करें.
चरण 2.2.1
मान लीजिए .फिर , तो . और का उपयोग करके फिर से लिखें.
चरण 2.2.1.1
मान लें . ज्ञात करें.
चरण 2.2.1.1.1
को अवकलित करें.
चरण 2.2.1.1.2
अवकलन करें.
चरण 2.2.1.1.2.1
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.2.1.1.2.2
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.1.1.3
का मान ज्ञात करें.
चरण 2.2.1.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.2.1.1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.2.1.1.3.3
को से गुणा करें.
चरण 2.2.1.1.4
में से घटाएं.
चरण 2.2.1.2
और का उपयोग करके समस्या को फिर से लिखें.
चरण 2.2.2
सरल करें.
चरण 2.2.2.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 2.2.2.2
को से गुणा करें.
चरण 2.2.2.3
को के बाईं ओर ले जाएं.
चरण 2.2.3
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 2.2.4
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 2.2.5
के संबंध में का इंटीग्रल है.
चरण 2.2.6
सरल करें.
चरण 2.2.6.1
को के रूप में फिर से लिखें.
चरण 2.2.6.2
को से गुणा करें.
चरण 2.2.7
की सभी घटनाओं को से बदलें.
चरण 2.3
स्थिरांक नियम लागू करें.
चरण 2.4
समाकलन के स्थिरांक को दाईं ओर के रूप में समूहित करें.
चरण 3
चरण 3.1
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 3.1.1
के प्रत्येक पद को से विभाजित करें.
चरण 3.1.2
बाईं ओर को सरल बनाएंं.
चरण 3.1.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.1.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.1.2.1.2
को से विभाजित करें.
चरण 3.1.3
दाईं ओर को सरल बनाएंं.
चरण 3.1.3.1
प्रत्येक पद को सरल करें.
चरण 3.1.3.1.1
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 3.1.3.1.2
से गुणा करें.
चरण 3.1.3.1.3
में से का गुणनखंड करें.
चरण 3.1.3.1.4
अलग-अलग भिन्न
चरण 3.1.3.1.5
को से विभाजित करें.
चरण 3.1.3.1.6
को से विभाजित करें.
चरण 3.1.3.1.7
को से गुणा करें.
चरण 3.1.3.1.8
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 3.1.3.1.9
से गुणा करें.
चरण 3.1.3.1.10
में से का गुणनखंड करें.
चरण 3.1.3.1.11
अलग-अलग भिन्न
चरण 3.1.3.1.12
को से विभाजित करें.
चरण 3.1.3.1.13
को से विभाजित करें.
चरण 3.1.3.1.14
को से गुणा करें.
चरण 3.2
के लिए हल करने के लिए, लघुगणक के गुणों का उपयोग करके समीकरण को फिर से लिखें.
चरण 3.3
लघुगणक की परिभाषा का उपयोग करते हुए को घातीय रूप में फिर से लिखें. अगर और धनात्मक वास्तविक संख्याएं हैं और , तो के बराबर है.
चरण 3.4
के लिए हल करें.
चरण 3.4.1
समीकरण को के रूप में फिर से लिखें.
चरण 3.4.2
निरपेक्ष मान पद को हटा दें. यह समीकरण के दाएं पक्ष की ओर एक बनाता है जो है.
चरण 3.4.3
समीकरण के दोनों पक्षों से घटाएं.
चरण 3.4.4
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 3.4.4.1
के प्रत्येक पद को से विभाजित करें.
चरण 3.4.4.2
बाईं ओर को सरल बनाएंं.
चरण 3.4.4.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.4.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.4.2.1.2
को से विभाजित करें.
चरण 3.4.4.3
दाईं ओर को सरल बनाएंं.
चरण 3.4.4.3.1
प्रत्येक पद को सरल करें.
चरण 3.4.4.3.1.1
को सरल करें.
चरण 3.4.4.3.1.2
से गुणा करें.
चरण 3.4.4.3.1.3
में से का गुणनखंड करें.
चरण 3.4.4.3.1.4
अलग-अलग भिन्न
चरण 3.4.4.3.1.5
को से विभाजित करें.
चरण 3.4.4.3.1.6
को से विभाजित करें.
चरण 3.4.4.3.1.7
को से विभाजित करें.
चरण 4
चरण 4.1
समाकलन की संतति को सरल करें.
चरण 4.2
को के रूप में फिर से लिखें.
चरण 4.3
और को पुन: क्रमित करें.
चरण 4.4
प्लस या माइनस के साथ स्थिरांक मिलाएं.