कैलकुलस उदाहरण

Solve the Differential Equation x(1+x^2)dx+y(1+y^2)dy=0
चरण 1
समीकरण के दोनों पक्षों से घटाएं.
चरण 2
दोनों पक्षों को समाकलित करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
प्रत्येक पक्ष का एक समाकलन सेट करें.
चरण 2.2
बाएं पक्ष का समाकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.2.1.1
वितरण गुणधर्म लागू करें.
चरण 2.2.1.2
और को पुन: क्रमित करें.
चरण 2.2.1.3
को से गुणा करें.
चरण 2.2.1.4
को के घात तक बढ़ाएं.
चरण 2.2.1.5
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 2.2.1.6
और जोड़ें.
चरण 2.2.1.7
और को पुन: क्रमित करें.
चरण 2.2.2
एकल समाकलन को कई समाकलन में विभाजित करें.
चरण 2.2.3
घात नियम के अनुसार, के संबंध में का समाकलन है.
चरण 2.2.4
घात नियम के अनुसार, के संबंध में का समाकलन है.
चरण 2.2.5
सरल करें.
चरण 2.3
दाएं पक्ष का समाकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
मान लीजिए .फिर , तो . और का उपयोग करके फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1.1
मान लें . ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1.1.1
को अवकलित करें.
चरण 2.3.1.1.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.3.1.1.3
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.1.1.4
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.1.1.5
और जोड़ें.
चरण 2.3.1.2
और का उपयोग करके समस्या को फिर से लिखें.
चरण 2.3.2
और को मिलाएं.
चरण 2.3.3
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 2.3.4
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 2.3.5
घात नियम के अनुसार, के संबंध में का समाकलन है.
चरण 2.3.6
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.6.1
को के रूप में फिर से लिखें.
चरण 2.3.6.2
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.6.2.1
को से गुणा करें.
चरण 2.3.6.2.2
को से गुणा करें.
चरण 2.3.7
की सभी घटनाओं को से बदलें.
चरण 2.4
समाकलन के स्थिरांक को दाईं ओर के रूप में समूहित करें.