समस्या दर्ज करें...
कैलकुलस उदाहरण
चरण 1
समीकरण के दोनों पक्षों से घटाएं.
चरण 2
चरण 2.1
प्रत्येक पक्ष का एक समाकलन सेट करें.
चरण 2.2
बाएं पक्ष का समाकलन करें.
चरण 2.2.1
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 2.2.2
घात नियम के अनुसार, के संबंध में का समाकलन है.
चरण 2.2.3
को के रूप में फिर से लिखें.
चरण 2.3
दाएं पक्ष का समाकलन करें.
चरण 2.3.1
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 2.3.2
घात नियम के अनुसार, के संबंध में का समाकलन है.
चरण 2.3.3
को के रूप में फिर से लिखें.
चरण 2.4
समाकलन के स्थिरांक को दाईं ओर के रूप में समूहित करें.
चरण 3
चरण 3.1
समीकरण के दोनों पक्षों को से गुणा करें.
चरण 3.2
समीकरण के दोनों पक्षों को सरल करें.
चरण 3.2.1
बाईं ओर को सरल बनाएंं.
चरण 3.2.1.1
को सरल करें.
चरण 3.2.1.1.1
और को मिलाएं.
चरण 3.2.1.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.1.1.2.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 3.2.1.1.2.2
में से का गुणनखंड करें.
चरण 3.2.1.1.2.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.1.1.2.4
व्यंजक को फिर से लिखें.
चरण 3.2.1.1.3
गुणा करें.
चरण 3.2.1.1.3.1
को से गुणा करें.
चरण 3.2.1.1.3.2
को से गुणा करें.
चरण 3.2.2
दाईं ओर को सरल बनाएंं.
चरण 3.2.2.1
को सरल करें.
चरण 3.2.2.1.1
और को मिलाएं.
चरण 3.2.2.1.2
वितरण गुणधर्म लागू करें.
चरण 3.2.2.1.3
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.2.1.3.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 3.2.2.1.3.2
में से का गुणनखंड करें.
चरण 3.2.2.1.3.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.2.1.3.4
व्यंजक को फिर से लिखें.
चरण 3.2.2.1.4
गुणा करें.
चरण 3.2.2.1.4.1
को से गुणा करें.
चरण 3.2.2.1.4.2
को से गुणा करें.
चरण 3.3
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 3.4
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 3.4.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 3.4.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 3.4.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 4
समाकलन की संतति को सरल करें.