कैलकुलस उदाहरण

Solve the Differential Equation (dy)/(dx)=(3y)/(2x+1)
चरण 1
चरों को अलग करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
दोनों पक्षों को से गुणा करें.
चरण 1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 1.2.1
में से का गुणनखंड करें.
चरण 1.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 1.2.3
व्यंजक को फिर से लिखें.
चरण 1.3
समीकरण को फिर से लिखें.
चरण 2
दोनों पक्षों को समाकलित करें.
और स्टेप्स के लिए टैप करें…
चरण 2.1
प्रत्येक पक्ष का एक समाकलन सेट करें.
चरण 2.2
के संबंध में का इंटीग्रल है.
चरण 2.3
दाएं पक्ष का समाकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.1
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 2.3.2
मान लीजिए .फिर , तो . और का उपयोग करके फिर से लिखें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1
मान लें . ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1.1
को अवकलित करें.
चरण 2.3.2.1.2
योग नियम के अनुसार, के संबंध में का व्युत्पन्न है.
चरण 2.3.2.1.3
का मान ज्ञात करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1.3.1
चूंकि , के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.2.1.3.2
घात नियम का उपयोग करके अवकलन करें, जिसमें यह वर्णन हो कि है, जहाँ है.
चरण 2.3.2.1.3.3
को से गुणा करें.
चरण 2.3.2.1.4
स्थिरांक नियम का उपयोग करके अंतर करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.2.1.4.1
चूंकि के संबंध में स्थिर है, के संबंध में का व्युत्पन्न है.
चरण 2.3.2.1.4.2
और जोड़ें.
चरण 2.3.2.2
और का उपयोग करके समस्या को फिर से लिखें.
चरण 2.3.3
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 2.3.3.1
को से गुणा करें.
चरण 2.3.3.2
को के बाईं ओर ले जाएं.
चरण 2.3.4
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 2.3.5
और को मिलाएं.
चरण 2.3.6
के संबंध में का इंटीग्रल है.
चरण 2.3.7
सरल करें.
चरण 2.3.8
की सभी घटनाओं को से बदलें.
चरण 2.4
समाकलन के स्थिरांक को दाईं ओर के रूप में समूहित करें.
चरण 3
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.1.1
और को मिलाएं.
चरण 3.2
लघुगणक वाले सभी पदों को समीकरण के बाईं पक्ष की ओर ले जाएँ.
चरण 3.3
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 3.4
पदों को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.1
और को मिलाएं.
चरण 3.4.2
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 3.5
को के बाईं ओर ले जाएं.
चरण 3.6
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.6.1
को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.6.1.1
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.6.1.1.1
को लघुगणक के अंदर ले जाकर को सरल करें.
चरण 3.6.1.1.2
में निरपेक्ष मान हटा दें क्योंकि सम घात वाले घातांक हमेशा धनात्मक होते हैं.
चरण 3.6.1.1.3
को लघुगणक के अंदर ले जाकर को सरल करें.
चरण 3.6.1.1.4
लघुगणक के भागफल गुण का प्रयोग करें.
चरण 3.6.1.2
को के रूप में फिर से लिखें.
चरण 3.6.1.3
को लघुगणक के अंदर ले जाकर को सरल करें.
चरण 3.6.1.4
उत्पाद नियम को पर लागू करें.
चरण 3.6.1.5
न्यूमेरेटर को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.6.1.5.1
घातांक को में गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.6.1.5.1.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 3.6.1.5.1.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.6.1.5.1.2.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.6.1.5.1.2.2
व्यंजक को फिर से लिखें.
चरण 3.6.1.5.2
सरल करें.
चरण 3.6.1.6
घातांक को में गुणा करें.
और स्टेप्स के लिए टैप करें…
चरण 3.6.1.6.1
घात नियम लागू करें और घातांक गुणा करें, .
चरण 3.6.1.6.2
और को मिलाएं.
चरण 3.7
के लिए हल करने के लिए, लघुगणक के गुणों का उपयोग करके समीकरण को फिर से लिखें.
चरण 3.8
लघुगणक की परिभाषा का उपयोग करते हुए को घातीय रूप में फिर से लिखें. अगर और धनात्मक वास्तविक संख्याएं हैं और , तो के बराबर है.
चरण 3.9
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.9.1
समीकरण को के रूप में फिर से लिखें.
चरण 3.9.2
दोनों पक्षों को से गुणा करें.
चरण 3.9.3
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 3.9.3.1
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.9.3.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.9.3.1.2
व्यंजक को फिर से लिखें.
चरण 4
समाकलन की संतति को सरल करें.