कैलकुलस उदाहरण

Solve the Differential Equation xy^2dx-x^2y^2dy=0
चरण 1
समीकरण के दोनों पक्षों से घटाएं.
चरण 2
दोनों पक्षों को से गुणा करें.
चरण 3
सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 3.1
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 3.2
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.2.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 3.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.2.3
व्यंजक को फिर से लिखें.
चरण 3.3
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 3.4
का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 3.4.1
में अग्रणी ऋणात्मक को न्यूमेरेटर में ले जाएं.
चरण 3.4.2
में से का गुणनखंड करें.
चरण 3.4.3
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 3.4.4
व्यंजक को फिर से लिखें.
चरण 3.5
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 4
दोनों पक्षों को समाकलित करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
प्रत्येक पक्ष का एक समाकलन सेट करें.
चरण 4.2
स्थिरांक नियम लागू करें.
चरण 4.3
दाएं पक्ष का समाकलन करें.
और स्टेप्स के लिए टैप करें…
चरण 4.3.1
चूँकि बटे अचर है, को समाकलन से हटा दें.
चरण 4.3.2
के संबंध में का इंटीग्रल है.
चरण 4.3.3
सरल करें.
चरण 4.4
समाकलन के स्थिरांक को दाईं ओर के रूप में समूहित करें.
चरण 5
के प्रत्येक पद को से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
के प्रत्येक पद को से विभाजित करें.
चरण 5.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 5.2.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 5.2.2
को से विभाजित करें.
चरण 5.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 5.3.1
प्रत्येक पद को सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.3.1.1
दो नकारात्मक मानों को विभाजित करने से एक सकारात्मक परिणाम प्राप्त होता है.
चरण 5.3.1.2
को से विभाजित करें.
चरण 5.3.1.3
ऋणात्मक को के भाजक से हटा दें.
चरण 5.3.1.4
को के रूप में फिर से लिखें.
चरण 6
समाकलन की संतति को सरल करें.