समस्या दर्ज करें...
एलजेब्रा उदाहरण
चरण 1
असमानता के दोनों पक्षों से घटाएं.
चरण 2
चरण 2.1
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 2.2
और को मिलाएं.
चरण 2.3
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 2.4
न्यूमेरेटर को सरल करें.
चरण 2.4.1
वितरण गुणधर्म लागू करें.
चरण 2.4.2
घातांक जोड़कर को से गुणा करें.
चरण 2.4.2.1
ले जाएं.
चरण 2.4.2.2
को से गुणा करें.
चरण 2.4.2.2.1
को के घात तक बढ़ाएं.
चरण 2.4.2.2.2
घातांकों को संयोजित करने के लिए घात नियम का उपयोग करें.
चरण 2.4.2.3
और जोड़ें.
चरण 2.4.3
को से गुणा करें.
चरण 2.4.4
में से घटाएं.
चरण 2.4.5
पदों को पुन: व्यवस्थित करें
चरण 2.4.6
को गुणनखंड रूप में फिर से लिखें.
चरण 2.4.6.1
प्रत्येक समूह के महत्तम समापवर्तक का गुणनखंड करें.
चरण 2.4.6.1.1
पहले दो पदों और अंतिम दो पदों को समूहित करें.
चरण 2.4.6.1.2
प्रत्येक समूह के महत्तम समापवर्तक (GCF) का गुणनखंड करें.
चरण 2.4.6.2
महत्तम समापवर्तक, का गुणनखंड करके बहुपद का गुणनखंड करें.
चरण 2.5
में से का गुणनखंड करें.
चरण 2.6
को के रूप में फिर से लिखें.
चरण 2.7
में से का गुणनखंड करें.
चरण 2.8
को के रूप में फिर से लिखें.
चरण 2.9
भिन्न के सामने ऋणात्मक ले जाएँ.
चरण 3
प्रत्येक गुणनखंड को के बराबर रखकर और उसे हल करके ऐसे सभी मान पता करें जहाँ व्यंजक नकारात्मक से सकारात्मक में परिवर्तित होता है.
चरण 4
समीकरण के दोनों पक्षों में जोड़ें.
चरण 5
समीकरण के दोनों पक्षों में जोड़ें.
चरण 6
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 7
चरण 7.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 7.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 7.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 8
समीकरण के दोनों पक्षों से घटाएं.
चरण 9
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 10
को के रूप में फिर से लिखें.
चरण 11
चरण 11.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 11.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 11.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 12
प्रत्येक गुणनखंड के लिए उन मानों को प्राप्त करने के लिए हल करें जहां निरपेक्ष मान व्यंजक ऋणात्मक से धनात्मक हो जाता है.
चरण 13
हल समेकित करें.
चरण 14
परीक्षण अंतराल बनाने के लिए प्रत्येक मूल का प्रयोग करें.
चरण 15
चरण 15.1
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
चरण 15.1.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 15.1.2
मूल असमानता में को से बदलें.
चरण 15.1.3
बाईं ओर दाईं ओर से कम नहीं है, जिसका अर्थ है कि दिया गया कथन गलत है.
असत्य
असत्य
चरण 15.2
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
चरण 15.2.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 15.2.2
मूल असमानता में को से बदलें.
चरण 15.2.3
बाईं ओर दाईं ओर से छोटा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
सत्य
सत्य
चरण 15.3
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
चरण 15.3.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 15.3.2
मूल असमानता में को से बदलें.
चरण 15.3.3
बाईं ओर दाईं ओर से कम नहीं है, जिसका अर्थ है कि दिया गया कथन गलत है.
असत्य
असत्य
चरण 15.4
अंतराल पर एक मान का परीक्षण करके देखें कि क्या यह असमानता को सत्य सिद्ध करता है.
चरण 15.4.1
अंतराल पर एक मान चुनें और देखें कि क्या यह मान मूल असमानता को सत्य बनाता है.
चरण 15.4.2
मूल असमानता में को से बदलें.
चरण 15.4.3
बाईं ओर दाईं ओर से छोटा है, जिसका अर्थ है कि दिया गया कथन हमेशा सत्य है.
सत्य
सत्य
चरण 15.5
यह निर्धारित करने के लिए अंतराल की तुलना करें कि कौन से तत्व मूल असमानता को संतुष्ट करते हैं.
गलत
सही
गलत
सही
गलत
सही
गलत
सही
चरण 16
हल में सभी सच्चे अंतराल होते हैं.
या
चरण 17
परिणाम कई रूपों में दिखाया जा सकता है.
असमानता रूप:
मध्यवर्ती संकेतन:
चरण 18