समस्या दर्ज करें...
एलजेब्रा उदाहरण
चरण 1
समीकरण को के रूप में फिर से लिखें.
चरण 2
चरण 2.1
वितरण गुणधर्म लागू करें.
चरण 2.2
और को मिलाएं.
चरण 2.3
गुणन के क्रमविनिमेय गुण का उपयोग करके फिर से लिखें.
चरण 2.4
और को मिलाएं.
चरण 3
समीकरण के दोनों पक्षों में जोड़ें.
चरण 4
चरण 4.1
मान की एक सूची के LCD को पता करना उन मान के भाजक के LCM को पता करने के समान है.
चरण 4.2
चूँकि में संख्याएँ और चर दोनों शामिल हैं, LCM को खोजने के लिए दो चरण हैं. संख्यात्मक भाग के लिए LCM खोजें फिर चर भाग के लिए LCM पता करें.
चरण 4.3
LCM (लघुत्तम समापवर्तक) सबसे छोटी धनात्मक संख्या है जिसे सभी संख्याएँ समान रूप से विभाजित करती हैं.
1. प्रत्येक संख्या के अभाज्य गुणनखंडों की सूची बनाइए.
2. प्रत्येक गुणनखंड को किसी भी संख्या में जितनी बार आता है उतनी बार गुणा करें.
चरण 4.4
संख्या एक अभाज्य संख्या नहीं है क्योंकि इसका केवल एक धनात्मक गुणनखंड है, जो स्वयं है.
अभाज्य संख्या नहीं
चरण 4.5
का LCM (लघुत्तम समापवर्तक) सभी अभाज्य गुणन खंड में से किसी एक संख्या में आने वाली सबसे बड़ी संख्या को गुणा करने का परिणाम है.
चरण 4.6
का गुणनखंड ही है.
बार आता है.
चरण 4.7
का गुणनखंड ही है.
बार आता है.
चरण 4.8
का LCM (न्यूनतम सामान्य गुणक) सभी अभाज्य गुणन खंडों को किसी भी पद में जितनी बार वे आते हैं, गुणा करने का परिणाम है.
चरण 4.9
को से गुणा करें.
चरण 5
चरण 5.1
के प्रत्येक पद को से गुणा करें.
चरण 5.2
बाईं ओर को सरल बनाएंं.
चरण 5.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.2.1.1
में से का गुणनखंड करें.
चरण 5.2.1.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.2.1.3
व्यंजक को फिर से लिखें.
चरण 5.3
दाईं ओर को सरल बनाएंं.
चरण 5.3.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.3.1.1
में से का गुणनखंड करें.
चरण 5.3.1.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 5.3.1.3
व्यंजक को फिर से लिखें.
चरण 6
चरण 6.1
समीकरण को के रूप में फिर से लिखें.
चरण 6.2
में से का गुणनखंड करें.
चरण 6.2.1
में से का गुणनखंड करें.
चरण 6.2.2
में से का गुणनखंड करें.
चरण 6.2.3
में से का गुणनखंड करें.
चरण 6.3
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 6.3.1
के प्रत्येक पद को से विभाजित करें.
चरण 6.3.2
बाईं ओर को सरल बनाएंं.
चरण 6.3.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.3.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 6.3.2.1.2
को से विभाजित करें.