एलजेब्रा उदाहरण

मूलों (शून्यकों) का पता लगाए x^5+2x^3+x=0
चरण 1
समीकरण के बाएँ पक्ष का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1
में से का गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 1.1.1
में से का गुणनखंड करें.
चरण 1.1.2
में से का गुणनखंड करें.
चरण 1.1.3
को के घात तक बढ़ाएं.
चरण 1.1.4
में से का गुणनखंड करें.
चरण 1.1.5
में से का गुणनखंड करें.
चरण 1.1.6
में से का गुणनखंड करें.
चरण 1.2
को के रूप में फिर से लिखें.
चरण 1.3
मान लीजिए . की सभी घटनाओं के लिए को प्रतिस्थापित करें.
चरण 1.4
पूर्ण वर्ग नियम का उपयोग करके गुणनखंड करें.
और स्टेप्स के लिए टैप करें…
चरण 1.4.1
को के रूप में फिर से लिखें.
चरण 1.4.2
जाँच करें कि मध्य पद पहले पद और तीसरे पद में वर्गीकृत की जा रही संख्याओं के गुणनफल का दोगुना है.
चरण 1.4.3
बहुपद को फिर से लिखें.
चरण 1.4.4
पूर्ण वर्ग त्रिपद नियम का उपयोग करके गुणनखंड करें, जहाँ और है.
चरण 1.5
की सभी घटनाओं को से बदलें.
चरण 2
यदि समीकरण के बांये पक्ष में कोई अकेला गुणनखंड के बराबर हो, तो सम्पूर्ण व्यंजक के बराबर होगा.
चरण 3
को के बराबर सेट करें.
चरण 4
को के बराबर सेट करें और के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.1
को के बराबर सेट करें.
चरण 4.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.1
को के बराबर सेट करें.
चरण 4.2.2
के लिए हल करें.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.1
समीकरण के दोनों पक्षों से घटाएं.
चरण 4.2.2.2
बाईं ओर के घातांक को समाप्त करने के लिए समीकरण के दोनों पक्षों का निर्दिष्ट मूल लें I
चरण 4.2.2.3
को के रूप में फिर से लिखें.
चरण 4.2.2.4
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
और स्टेप्स के लिए टैप करें…
चरण 4.2.2.4.1
सबसे पहले, पहला समाधान पता करने के लिए के धनात्मक मान का उपयोग करें.
चरण 4.2.2.4.2
इसके बाद, दूसरा हल ज्ञात करने के लिए के ऋणात्मक मान का उपयोग करें.
चरण 4.2.2.4.3
पूर्ण हल के धनात्मक और ऋणात्मक दोनों भागों का परिणाम है.
चरण 5
अंतिम हल वो सभी मान हैं जो को सिद्ध करते हैं.
चरण 6