उदाहरण
चरण 1
को से प्रतिस्थापित करें.
चरण 2
यह एक सम्मिश्र संख्या का त्रिकोणमितीय रूप है जहाँ मापांक है और सम्मिश्र तल पर बनाया गया कोण है.
चरण 3
सम्मिश्र संख्या का मापांक सम्मिश्र तल पर मूल बिन्दु से दूरी है.
जहां
चरण 4
और के वास्तविक मानों को प्रतिस्थापित करें.
चरण 5
धनात्मक वास्तविक संख्या मानकर, करणी के अंतर्गत पदों को बाहर निकालें.
चरण 6
सम्मिश्र तल पर बिंदु का कोण वास्तविक भाग पर सम्मिश्र भाग का व्युत्क्रम स्पर्शरेखा होता है.
चरण 7
चूँकि तर्क अपरिभाषित है और धनात्मक है, जटिल तल पर बिंदु का कोण है.
चरण 8
और के मानों को प्रतिस्थापित करें.
चरण 9
समीकरण के दाहिने पक्ष को त्रिकोणमितीय रूप से बदलें.
चरण 10
के लिए समीकरण पता करने के लिए डी मोइवर के प्रमेय का प्रयोग करें.
चरण 11
त्रिकोणमितीय रूप के मापांकों को के बराबर करके का मान पता करें.
चरण 12
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
चरण 13
का अनुमानित मान पता करें
चरण 14
के संभावित मान को पता करें.
और
चरण 15
के सभी संभावित मानों को पता करने से समीकरण बन जाता है.
चरण 16
के लिए का मान पता करें.
चरण 17
चरण 17.1
सरल करें.
चरण 17.1.1
गुणा करें.
चरण 17.1.1.1
को से गुणा करें.
चरण 17.1.1.2
को से गुणा करें.
चरण 17.1.2
और जोड़ें.
चरण 17.2
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 17.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 17.2.2
बाईं ओर को सरल बनाएंं.
चरण 17.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 17.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 17.2.2.1.2
को से विभाजित करें.
चरण 17.2.3
दाईं ओर को सरल बनाएंं.
चरण 17.2.3.1
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 17.2.3.2
गुणा करें.
चरण 17.2.3.2.1
को से गुणा करें.
चरण 17.2.3.2.2
को से गुणा करें.
चरण 18
समीकरण का हल पता करने के लिए और के मानों का उपयोग करें.
चरण 19
चरण 19.1
प्रत्येक पद को सरल करें.
चरण 19.1.1
का सटीक मान है.
चरण 19.1.2
का सटीक मान है.
चरण 19.1.3
और को मिलाएं.
चरण 19.2
वितरण गुणधर्म लागू करें.
चरण 19.3
गुणा करें.
चरण 19.3.1
और को मिलाएं.
चरण 19.3.2
को से गुणा करें.
चरण 19.4
और को मिलाएं.
चरण 19.5
प्रत्येक पद को सरल करें.
चरण 19.5.1
को से विभाजित करें.
चरण 19.5.2
में से का गुणनखंड करें.
चरण 19.5.3
में से का गुणनखंड करें.
चरण 19.5.4
अलग-अलग भिन्न
चरण 19.5.5
को से विभाजित करें.
चरण 19.5.6
को से विभाजित करें.
चरण 20
बाएं पक्ष में ले जाने के बाद के मान की गणना करने के लिए के स्थान पर को प्रतिस्थापित करें.
चरण 21
के लिए का मान पता करें.
चरण 22
चरण 22.1
सरल करें.
चरण 22.1.1
को से गुणा करें.
चरण 22.1.2
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 22.1.3
और को मिलाएं.
चरण 22.1.4
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 22.1.5
को से गुणा करें.
चरण 22.1.6
और जोड़ें.
चरण 22.2
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 22.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 22.2.2
बाईं ओर को सरल बनाएंं.
चरण 22.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 22.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 22.2.2.1.2
को से विभाजित करें.
चरण 22.2.3
दाईं ओर को सरल बनाएंं.
चरण 22.2.3.1
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 22.2.3.2
गुणा करें.
चरण 22.2.3.2.1
को से गुणा करें.
चरण 22.2.3.2.2
को से गुणा करें.
चरण 23
समीकरण का हल पता करने के लिए और के मानों का उपयोग करें.
चरण 24
चरण 24.1
प्रत्येक पद को सरल करें.
चरण 24.1.1
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें. व्यंजक को ऋणात्मक बनाएंं क्योंकि दूसरे चतुर्थांश में कोज्या ऋणात्मक है.
चरण 24.1.2
का सटीक मान है.
चरण 24.1.3
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें.
चरण 24.1.4
का सटीक मान है.
चरण 24.1.5
और को मिलाएं.
चरण 24.2
वितरण गुणधर्म लागू करें.
चरण 24.3
गुणा करें.
चरण 24.3.1
को से गुणा करें.
चरण 24.3.2
और को मिलाएं.
चरण 24.3.3
को से गुणा करें.
चरण 24.4
और को मिलाएं.
चरण 24.5
प्रत्येक पद को सरल करें.
चरण 24.5.1
को से विभाजित करें.
चरण 24.5.2
में से का गुणनखंड करें.
चरण 24.5.3
में से का गुणनखंड करें.
चरण 24.5.4
अलग-अलग भिन्न
चरण 24.5.5
को से विभाजित करें.
चरण 24.5.6
को से विभाजित करें.
चरण 25
बाएं पक्ष में ले जाने के बाद के मान की गणना करने के लिए के स्थान पर को प्रतिस्थापित करें.
चरण 26
के लिए का मान पता करें.
चरण 27
चरण 27.1
सरल करें.
चरण 27.1.1
को से गुणा करें.
चरण 27.1.2
को एक सामान्य भाजक वाली भिन्न के रूप में लिखने के लिए, से गुणा करें.
चरण 27.1.3
और को मिलाएं.
चरण 27.1.4
सामान्य भाजक पर न्यूमेरेटरों को जोड़ें.
चरण 27.1.5
को से गुणा करें.
चरण 27.1.6
और जोड़ें.
चरण 27.2
के प्रत्येक पद को से भाग दें और सरल करें.
चरण 27.2.1
के प्रत्येक पद को से विभाजित करें.
चरण 27.2.2
बाईं ओर को सरल बनाएंं.
चरण 27.2.2.1
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 27.2.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 27.2.2.1.2
को से विभाजित करें.
चरण 27.2.3
दाईं ओर को सरल बनाएंं.
चरण 27.2.3.1
भाजक के प्रतिलोम से न्यूमेरेटर को गुणा करें.
चरण 27.2.3.2
का उभयनिष्ठ गुणनखंड रद्द करें.
चरण 27.2.3.2.1
में से का गुणनखंड करें.
चरण 27.2.3.2.2
उभयनिष्ठ गुणनखंड रद्द करें.
चरण 27.2.3.2.3
व्यंजक को फिर से लिखें.
चरण 28
समीकरण का हल पता करने के लिए और के मानों का उपयोग करें.
चरण 29
चरण 29.1
प्रत्येक पद को सरल करें.
चरण 29.1.1
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें.
चरण 29.1.2
का सटीक मान है.
चरण 29.1.3
पहले चतुर्थांश में तुल्य त्रिभुज मानों वाला कोण ज्ञात करके संदर्भ कोण लागू करें. व्यंजक को ऋणात्मक बनाएंं क्योंकि चौथे चतुर्थांश में ज्या ऋणात्मक है.
चरण 29.1.4
का सटीक मान है.
चरण 29.1.5
को से गुणा करें.
चरण 29.1.6
को के बाईं ओर ले जाएं.
चरण 29.1.7
को के रूप में फिर से लिखें.
चरण 29.2
व्यंजक को सरल बनाएंं.
चरण 29.2.1
में से घटाएं.
चरण 29.2.2
को से गुणा करें.
चरण 30
बाएं पक्ष में ले जाने के बाद के मान की गणना करने के लिए के स्थान पर को प्रतिस्थापित करें.
चरण 31
ये के मिश्रित हल हैं.