प्री-कैलकुलस उदाहरण

एक बिंदु और y-अंतःखंड से समीकरण ज्ञात करें
(2,3) , b=6
चरण 1
एक रेखा के समीकरण सूत्र का उपयोग करके m का मान पता करें.
y=mx+b
चरण 2
समीकरण में b के मान को प्रतिस्थापित करें.
y=mx+6
चरण 3
समीकरण में x के मान को प्रतिस्थापित करें.
y=m(2)+6
चरण 4
समीकरण में y के मान को प्रतिस्थापित करें.
3=m(2)+6
चरण 5
m का मान पता करें.
और स्टेप्स के लिए टैप करें…
चरण 5.1
समीकरण को m(2)+6=3 के रूप में फिर से लिखें.
m(2)+6=3
चरण 5.2
2 को m के बाईं ओर ले जाएं.
2m+6=3
चरण 5.3
m वाले सभी पदों को समीकरण के दाईं ओर ले जाएं.
और स्टेप्स के लिए टैप करें…
चरण 5.3.1
समीकरण के दोनों पक्षों से 6 घटाएं.
2m=3-6
चरण 5.3.2
3 में से 6 घटाएं.
2m=-3
2m=-3
चरण 5.4
2m=-3 के प्रत्येक पद को 2 से भाग दें और सरल करें.
और स्टेप्स के लिए टैप करें…
चरण 5.4.1
2m=-3 के प्रत्येक पद को 2 से विभाजित करें.
2m2=-32
चरण 5.4.2
बाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 5.4.2.1
2 का उभयनिष्ठ गुणनखंड रद्द करें.
और स्टेप्स के लिए टैप करें…
चरण 5.4.2.1.1
उभयनिष्ठ गुणनखंड रद्द करें.
2m2=-32
चरण 5.4.2.1.2
m को 1 से विभाजित करें.
m=-32
m=-32
m=-32
चरण 5.4.3
दाईं ओर को सरल बनाएंं.
और स्टेप्स के लिए टैप करें…
चरण 5.4.3.1
भिन्न के सामने ऋणात्मक ले जाएँ.
m=-32
m=-32
m=-32
m=-32
चरण 6
अब जबकि m (ढलान) और b (y- अंत:खंड) के मान ज्ञात हो गए हैं, रेखा के समीकरण को ज्ञात करने के लिए उन्हें y=mx+b में प्रतिस्थापित करें.
y=-32x+6
चरण 7
अपनी समस्या दर्ज करें
using Amazon.Auth.AccessControlPolicy;
Mathway के लिए जावास्क्रिप्ट और एक आधुनिक ब्राउज़र की ज़रूरत होती है।
 [x2  12  π  xdx ] 
AmazonPay