उदाहरण
,
चरण 1
चरण 1.1
वितरण गुणधर्म लागू करें.
चरण 1.2
व्यंजक को सरल बनाएंं.
चरण 1.2.1
को से गुणा करें.
चरण 1.2.2
को के बाईं ओर ले जाएं.
चरण 2
समीकरण के दोनों पक्षों से घटाएं.
चरण 3
हल पता करने के लिए द्विघात सूत्र का प्रयोग करें.
चरण 4
द्विघात सूत्र में , और मानों को प्रतिस्थापित करें और के लिए हल करें.
चरण 5
चरण 5.1
न्यूमेरेटर को सरल करें.
चरण 5.1.1
को के घात तक बढ़ाएं.
चरण 5.1.2
गुणा करें.
चरण 5.1.2.1
को से गुणा करें.
चरण 5.1.2.2
को से गुणा करें.
चरण 5.1.3
और जोड़ें.
चरण 5.1.4
को के रूप में फिर से लिखें.
चरण 5.1.4.1
में से का गुणनखंड करें.
चरण 5.1.4.2
को के रूप में फिर से लिखें.
चरण 5.1.5
करणी से पदों को बाहर निकालें.
चरण 5.2
को से गुणा करें.
चरण 5.3
को सरल करें.
चरण 6
चरण 6.1
न्यूमेरेटर को सरल करें.
चरण 6.1.1
को के घात तक बढ़ाएं.
चरण 6.1.2
गुणा करें.
चरण 6.1.2.1
को से गुणा करें.
चरण 6.1.2.2
को से गुणा करें.
चरण 6.1.3
और जोड़ें.
चरण 6.1.4
को के रूप में फिर से लिखें.
चरण 6.1.4.1
में से का गुणनखंड करें.
चरण 6.1.4.2
को के रूप में फिर से लिखें.
चरण 6.1.5
करणी से पदों को बाहर निकालें.
चरण 6.2
को से गुणा करें.
चरण 6.3
को सरल करें.
चरण 6.4
को में बदलें.
चरण 7
चरण 7.1
न्यूमेरेटर को सरल करें.
चरण 7.1.1
को के घात तक बढ़ाएं.
चरण 7.1.2
गुणा करें.
चरण 7.1.2.1
को से गुणा करें.
चरण 7.1.2.2
को से गुणा करें.
चरण 7.1.3
और जोड़ें.
चरण 7.1.4
को के रूप में फिर से लिखें.
चरण 7.1.4.1
में से का गुणनखंड करें.
चरण 7.1.4.2
को के रूप में फिर से लिखें.
चरण 7.1.5
करणी से पदों को बाहर निकालें.
चरण 7.2
को से गुणा करें.
चरण 7.3
को सरल करें.
चरण 7.4
को में बदलें.
चरण 8
अंतिम उत्तर दोनों हलों का संयोजन है.
चरण 9
चरण 9.1
अंतराल में शामिल नहीं है. यह अंतिम हल का हिस्सा नहीं है.
अंतराल पर नहीं है
चरण 9.2
अंतराल में है.
चरण 10
परिणाम कई रूपों में दिखाया जा सकता है.
सटीक रूप:
दशमलव रूप: