उदाहरण
[330103020]⎡⎢⎣330103020⎤⎥⎦
चरण 1
चरण 1.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 33 by its cofactor and add.
चरण 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
चरण 1.1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
चरण 1.1.3
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|3003|∣∣∣3003∣∣∣
चरण 1.1.4
Multiply element a31a31 by its cofactor.
0|3003|0∣∣∣3003∣∣∣
चरण 1.1.5
The minor for a32a32 is the determinant with row 33 and column 22 deleted.
|3013|∣∣∣3013∣∣∣
चरण 1.1.6
Multiply element a32a32 by its cofactor.
-2|3013|−2∣∣∣3013∣∣∣
चरण 1.1.7
The minor for a33a33 is the determinant with row 33 and column 33 deleted.
|3310|∣∣∣3310∣∣∣
चरण 1.1.8
Multiply element a33a33 by its cofactor.
0|3310|0∣∣∣3310∣∣∣
चरण 1.1.9
Add the terms together.
0|3003|-2|3013|+0|3310|0∣∣∣3003∣∣∣−2∣∣∣3013∣∣∣+0∣∣∣3310∣∣∣
0|3003|-2|3013|+0|3310|0∣∣∣3003∣∣∣−2∣∣∣3013∣∣∣+0∣∣∣3310∣∣∣
चरण 1.2
00 को |3003|∣∣∣3003∣∣∣ से गुणा करें.
0-2|3013|+0|3310|0−2∣∣∣3013∣∣∣+0∣∣∣3310∣∣∣
चरण 1.3
00 को |3310|∣∣∣3310∣∣∣ से गुणा करें.
0-2|3013|+00−2∣∣∣3013∣∣∣+0
चरण 1.4
|3013|∣∣∣3013∣∣∣ का मान ज्ञात करें.
चरण 1.4.1
2×22×2 मैट्रिक्स का निर्धारक सूत्र |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb का उपयोग करके पता किया जा सकता है.
0-2(3⋅3-1⋅0)+00−2(3⋅3−1⋅0)+0
चरण 1.4.2
सारणिक को सरल करें.
चरण 1.4.2.1
33 को 33 से गुणा करें.
0-2(9-1⋅0)+00−2(9−1⋅0)+0
चरण 1.4.2.2
99 में से 00 घटाएं.
0-2⋅9+00−2⋅9+0
0-2⋅9+00−2⋅9+0
0-2⋅9+00−2⋅9+0
चरण 1.5
सारणिक को सरल करें.
चरण 1.5.1
-2−2 को 99 से गुणा करें.
0-18+00−18+0
चरण 1.5.2
00 में से 1818 घटाएं.
-18+0−18+0
चरण 1.5.3
-18−18 और 00 जोड़ें.
-18−18
-18−18
-18−18
चरण 2
Since the determinant is non-zero, the inverse exists.
चरण 3
Set up a 3×63×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[330100103010020001]⎡⎢⎣330100103010020001⎤⎥⎦
चरण 4
चरण 4.1
Multiply each element of R1R1 by 1313 to make the entry at 1,11,1 a 11.
चरण 4.1.1
Multiply each element of R1R1 by 1313 to make the entry at 1,11,1 a 11.
[333303130303103010020001]⎡⎢
⎢⎣333303130303103010020001⎤⎥
⎥⎦
चरण 4.1.2
R1R1 को सरल करें.
[1101300103010020001]⎡⎢
⎢⎣1101300103010020001⎤⎥
⎥⎦
[1101300103010020001]⎡⎢
⎢⎣1101300103010020001⎤⎥
⎥⎦
चरण 4.2
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
चरण 4.2.1
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
[11013001-10-13-00-131-00-0020001]
चरण 4.2.2
R2 को सरल करें.
[11013000-13-1310020001]
[11013000-13-1310020001]
चरण 4.3
Multiply each element of R2 by -1 to make the entry at 2,2 a 1.
चरण 4.3.1
Multiply each element of R2 by -1 to make the entry at 2,2 a 1.
[1101300-0--1-1⋅3--13-1⋅1-0020001]
चरण 4.3.2
R2 को सरल करें.
[110130001-313-10020001]
[110130001-313-10020001]
चरण 4.4
Perform the row operation R3=R3-2R2 to make the entry at 3,2 a 0.
चरण 4.4.1
Perform the row operation R3=R3-2R2 to make the entry at 3,2 a 0.
[110130001-313-100-2⋅02-2⋅10-2⋅-30-2(13)0-2⋅-11-2⋅0]
चरण 4.4.2
R3 को सरल करें.
[110130001-313-10006-2321]
[110130001-313-10006-2321]
चरण 4.5
Multiply each element of R3 by 16 to make the entry at 3,3 a 1.
चरण 4.5.1
Multiply each element of R3 by 16 to make the entry at 3,3 a 1.
[110130001-313-10060666-2362616]
चरण 4.5.2
R3 को सरल करें.
[110130001-313-10001-191316]
[110130001-313-10001-191316]
चरण 4.6
Perform the row operation R2=R2+3R3 to make the entry at 2,3 a 0.
चरण 4.6.1
Perform the row operation R2=R2+3R3 to make the entry at 2,3 a 0.
[11013000+3⋅01+3⋅0-3+3⋅113+3(-19)-1+3(13)0+3(16)001-191316]
चरण 4.6.2
R2 को सरल करें.
[11013000100012001-191316]
[11013000100012001-191316]
चरण 4.7
Perform the row operation R1=R1-R2 to make the entry at 1,2 a 0.
चरण 4.7.1
Perform the row operation R1=R1-R2 to make the entry at 1,2 a 0.
[1-01-10-013-00-00-120100012001-191316]
चरण 4.7.2
R1 को सरल करें.
[100130-120100012001-191316]
[100130-120100012001-191316]
[100130-120100012001-191316]
चरण 5
The right half of the reduced row echelon form is the inverse.
[130-120012-191316]