उदाहरण

रूपांतरण का वर्णन करें
f(x)=3x-4
चरण 1
पैरेंट फलन दिए गए फलन के प्रकार का सबसे सरल रूप है.
g(x)=x
चरण 2
पहले समीकरण से दूसरे समीकरण में परिवर्तन प्रत्येक समीकरण के लिए a, h और k को खोज कर पता किया जा सकता है.
y=ax-h+k
चरण 3
निरपेक्ष मान से 1 का गुणनखंड करके x के गुणांक को 1 के गुणांक के बराबर बनाएंँ.
y=x
चरण 4
निरपेक्ष मान से 3 का गुणनखंड करके x के गुणांक को 1 के गुणांक के बराबर बनाएंँ.
y=3x-43
चरण 5
y=3x-43 के लिए a, h और k पता करें.
a=1.7320508
h=1.3
k=0
चरण 6
क्षैतिज बदलाव h के मान पर निर्भर करता है. जब h>0, क्षैतिज बदलाव को इस प्रकार वर्णित किया जाता है:
f(x)=f(x+h) - ग्राफ को h यूनिट बायीं ओर शिफ्ट किया गया.
f(x)=f(x-h) - ग्राफ को h यूनिट दायें ओर शिफ्ट किया गया.
क्षैतिज शिफ्ट: दाईं 1.3 यूनिट
चरण 7
ऊर्ध्वाधर बदलाव k के मान पर निर्भर करता है. जब k>0, ऊर्ध्वाधर बदलाव को इस प्रकार वर्णित किया जाता है:
f(x)=f(x)+k - ग्राफ को k यूनिट ऊपर शिफ्ट किया गया.
f(x)=f(x)-k - The graph is shifted down k units.
ऊर्ध्वाधर बदलाव: कोई नहीं
चरण 8
a का चिन्ह x-अक्ष पर परावर्तन का वर्णन करता है. -a का अर्थ है कि ग्राफ x-अक्ष पर परावर्तित होता है.
x-अक्ष के बारे में परावर्तन: कोई नहीं
चरण 9
a का मान ग्राफ़ के ऊर्ध्वाधर खिंचाव या संपीड़न का वर्णन करता है.
a>1 एक ऊर्ध्वाधर खिंचाव है (इसे संकरा बनाता है)
0<a<1 एक लंबवत संपीड़न है (इसे व्यापक बनाता है)
ऊर्ध्वाधर खिंचाव: फैला हुआ
चरण 10
परिवर्तन को पता करने के लिए, दो फलनों की तुलना करें और यह देखने के लिए जांचें कि क्या क्षैतिज या ऊर्ध्वाधर बदलाव है, x-अक्ष के बारे में प्रतिबिंब है और यदि कोई ऊर्ध्वाधर खिंचाव है.
पैरेंट फंक्शन: g(x)=x
क्षैतिज शिफ्ट: दाईं 1.3 यूनिट
ऊर्ध्वाधर बदलाव: कोई नहीं
x-अक्ष के बारे में परावर्तन: कोई नहीं
ऊर्ध्वाधर खिंचाव: फैला हुआ
चरण 11
अपनी समस्या दर्ज करें
Mathway के लिए जावास्क्रिप्ट और एक आधुनिक ब्राउज़र की ज़रूरत होती है।
 [x2  12  π  xdx ] 
AmazonPay