लीनियर एलजेब्रा उदाहरण
[24681012120]
चरण 1
Nullity is the dimension of the null space, which is the same as the number of free variables in the system after row reducing. The free variables are the columns without pivot positions.
चरण 2
चरण 2.1
Multiply each element of R1 by 12 to make the entry at 1,1 a 1.
चरण 2.1.1
Multiply each element of R1 by 12 to make the entry at 1,1 a 1.
[22426281012120]
चरण 2.1.2
R1 को सरल करें.
[12381012120]
[12381012120]
चरण 2.2
Perform the row operation R2=R2-8R1 to make the entry at 2,1 a 0.
चरण 2.2.1
Perform the row operation R2=R2-8R1 to make the entry at 2,1 a 0.
[1238-8⋅110-8⋅212-8⋅3120]
चरण 2.2.2
R2 को सरल करें.
[1230-6-12120]
[1230-6-12120]
चरण 2.3
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
चरण 2.3.1
Perform the row operation R3=R3-R1 to make the entry at 3,1 a 0.
[1230-6-121-12-20-3]
चरण 2.3.2
R3 को सरल करें.
[1230-6-1200-3]
[1230-6-1200-3]
चरण 2.4
Multiply each element of R2 by -16 to make the entry at 2,2 a 1.
चरण 2.4.1
Multiply each element of R2 by -16 to make the entry at 2,2 a 1.
[123-16⋅0-16⋅-6-16⋅-1200-3]
चरण 2.4.2
R2 को सरल करें.
[12301200-3]
[12301200-3]
चरण 2.5
Multiply each element of R3 by -13 to make the entry at 3,3 a 1.
चरण 2.5.1
Multiply each element of R3 by -13 to make the entry at 3,3 a 1.
[123012-13⋅0-13⋅0-13⋅-3]
चरण 2.5.2
R3 को सरल करें.
[123012001]
[123012001]
चरण 2.6
Perform the row operation R2=R2-2R3 to make the entry at 2,3 a 0.
चरण 2.6.1
Perform the row operation R2=R2-2R3 to make the entry at 2,3 a 0.
[1230-2⋅01-2⋅02-2⋅1001]
चरण 2.6.2
R2 को सरल करें.
[123010001]
[123010001]
चरण 2.7
Perform the row operation R1=R1-3R3 to make the entry at 1,3 a 0.
चरण 2.7.1
Perform the row operation R1=R1-3R3 to make the entry at 1,3 a 0.
[1-3⋅02-3⋅03-3⋅1010001]
चरण 2.7.2
R1 को सरल करें.
[120010001]
[120010001]
चरण 2.8
Perform the row operation R1=R1-2R2 to make the entry at 1,2 a 0.
चरण 2.8.1
Perform the row operation R1=R1-2R2 to make the entry at 1,2 a 0.
[1-2⋅02-2⋅10-2⋅0010001]
चरण 2.8.2
R1 को सरल करें.
[100010001]
[100010001]
[100010001]
चरण 3
The pivot positions are the locations with the leading 1 in each row. The pivot columns are the columns that have a pivot position.
Pivot Positions: a11,a22, and a33
Pivot Columns: 1,2, and 3
चरण 4
The nullity is the number of columns without a pivot position in the row reduced matrix.
0