लीनियर एलजेब्रा उदाहरण
[314121010]
चरण 1
चरण 1.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 3 by its cofactor and add.
चरण 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
चरण 1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
चरण 1.1.3
The minor for a31 is the determinant with row 3 and column 1 deleted.
|1421|
चरण 1.1.4
Multiply element a31 by its cofactor.
0|1421|
चरण 1.1.5
The minor for a32 is the determinant with row 3 and column 2 deleted.
|3411|
चरण 1.1.6
Multiply element a32 by its cofactor.
-1|3411|
चरण 1.1.7
The minor for a33 is the determinant with row 3 and column 3 deleted.
|3112|
चरण 1.1.8
Multiply element a33 by its cofactor.
0|3112|
चरण 1.1.9
Add the terms together.
0|1421|-1|3411|+0|3112|
0|1421|-1|3411|+0|3112|
चरण 1.2
0 को |1421| से गुणा करें.
0-1|3411|+0|3112|
चरण 1.3
0 को |3112| से गुणा करें.
0-1|3411|+0
चरण 1.4
|3411| का मान ज्ञात करें.
चरण 1.4.1
2×2 मैट्रिक्स का निर्धारक सूत्र |abcd|=ad-cb का उपयोग करके पता किया जा सकता है.
0-1(3⋅1-1⋅4)+0
चरण 1.4.2
सारणिक को सरल करें.
चरण 1.4.2.1
प्रत्येक पद को सरल करें.
चरण 1.4.2.1.1
3 को 1 से गुणा करें.
0-1(3-1⋅4)+0
चरण 1.4.2.1.2
-1 को 4 से गुणा करें.
0-1(3-4)+0
0-1(3-4)+0
चरण 1.4.2.2
3 में से 4 घटाएं.
0-1⋅-1+0
0-1⋅-1+0
0-1⋅-1+0
चरण 1.5
सारणिक को सरल करें.
चरण 1.5.1
-1 को -1 से गुणा करें.
0+1+0
चरण 1.5.2
0 और 1 जोड़ें.
1+0
चरण 1.5.3
1 और 0 जोड़ें.
1
1
1
चरण 2
Since the determinant is non-zero, the inverse exists.
चरण 3
Set up a 3×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[314100121010010001]
चरण 4
चरण 4.1
Multiply each element of R1 by 13 to make the entry at 1,1 a 1.
चरण 4.1.1
Multiply each element of R1 by 13 to make the entry at 1,1 a 1.
[331343130303121010010001]
चरण 4.1.2
R1 को सरल करें.
[113431300121010010001]
[113431300121010010001]
चरण 4.2
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
चरण 4.2.1
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
[1134313001-12-131-430-131-00-0010001]
चरण 4.2.2
R2 को सरल करें.
[113431300053-13-1310010001]
[113431300053-13-1310010001]
चरण 4.3
Multiply each element of R2 by 35 to make the entry at 2,2 a 1.
चरण 4.3.1
Multiply each element of R2 by 35 to make the entry at 2,2 a 1.
[11343130035⋅035⋅5335(-13)35(-13)35⋅135⋅0010001]
चरण 4.3.2
R2 को सरल करें.
[11343130001-15-15350010001]
[11343130001-15-15350010001]
चरण 4.4
Perform the row operation R3=R3-R2 to make the entry at 3,2 a 0.
चरण 4.4.1
Perform the row operation R3=R3-R2 to make the entry at 3,2 a 0.
[11343130001-15-153500-01-10+150+150-351-0]
चरण 4.4.2
R3 को सरल करें.
[11343130001-15-15350001515-351]
[11343130001-15-15350001515-351]
चरण 4.5
Multiply each element of R3 by 5 to make the entry at 3,3 a 1.
चरण 4.5.1
Multiply each element of R3 by 5 to make the entry at 3,3 a 1.
[11343130001-15-153505⋅05⋅05(15)5(15)5(-35)5⋅1]
चरण 4.5.2
R3 को सरल करें.
[11343130001-15-153500011-35]
[11343130001-15-153500011-35]
चरण 4.6
Perform the row operation R2=R2+15R3 to make the entry at 2,3 a 0.
चरण 4.6.1
Perform the row operation R2=R2+15R3 to make the entry at 2,3 a 0.
[1134313000+15⋅01+15⋅0-15+15⋅1-15+15⋅135+15⋅-30+15⋅50011-35]
चरण 4.6.2
R2 को सरल करें.
[1134313000100010011-35]
[1134313000100010011-35]
चरण 4.7
Perform the row operation R1=R1-43R3 to make the entry at 1,3 a 0.
चरण 4.7.1
Perform the row operation R1=R1-43R3 to make the entry at 1,3 a 0.
[1-43⋅013-43⋅043-43⋅113-43⋅10-43⋅-30-43⋅50100010011-35]
चरण 4.7.2
R1 को सरल करें.
[1130-14-2030100010011-35]
[1130-14-2030100010011-35]
चरण 4.8
Perform the row operation R1=R1-13R2 to make the entry at 1,2 a 0.
चरण 4.8.1
Perform the row operation R1=R1-13R2 to make the entry at 1,2 a 0.
[1-13⋅013-13⋅10-13⋅0-1-13⋅04-13⋅0-203-13⋅10100010011-35]
चरण 4.8.2
R1 को सरल करें.
[100-14-70100010011-35]
[100-14-70100010011-35]
[100-14-70100010011-35]
चरण 5
The right half of the reduced row echelon form is the inverse.
[-14-70011-35]