लीनियर एलजेब्रा उदाहरण
[330103020]
चरण 1
चरण 1.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 3 by its cofactor and add.
चरण 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
चरण 1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
चरण 1.1.3
The minor for a31 is the determinant with row 3 and column 1 deleted.
|3003|
चरण 1.1.4
Multiply element a31 by its cofactor.
0|3003|
चरण 1.1.5
The minor for a32 is the determinant with row 3 and column 2 deleted.
|3013|
चरण 1.1.6
Multiply element a32 by its cofactor.
-2|3013|
चरण 1.1.7
The minor for a33 is the determinant with row 3 and column 3 deleted.
|3310|
चरण 1.1.8
Multiply element a33 by its cofactor.
0|3310|
चरण 1.1.9
Add the terms together.
0|3003|-2|3013|+0|3310|
0|3003|-2|3013|+0|3310|
चरण 1.2
0 को |3003| से गुणा करें.
0-2|3013|+0|3310|
चरण 1.3
0 को |3310| से गुणा करें.
0-2|3013|+0
चरण 1.4
|3013| का मान ज्ञात करें.
चरण 1.4.1
2×2 मैट्रिक्स का निर्धारक सूत्र |abcd|=ad-cb का उपयोग करके पता किया जा सकता है.
0-2(3⋅3-1⋅0)+0
चरण 1.4.2
सारणिक को सरल करें.
चरण 1.4.2.1
3 को 3 से गुणा करें.
0-2(9-1⋅0)+0
चरण 1.4.2.2
9 में से 0 घटाएं.
0-2⋅9+0
0-2⋅9+0
0-2⋅9+0
चरण 1.5
सारणिक को सरल करें.
चरण 1.5.1
-2 को 9 से गुणा करें.
0-18+0
चरण 1.5.2
0 में से 18 घटाएं.
-18+0
चरण 1.5.3
-18 और 0 जोड़ें.
-18
-18
-18
चरण 2
Since the determinant is non-zero, the inverse exists.
चरण 3
Set up a 3×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[330100103010020001]
चरण 4
चरण 4.1
Multiply each element of R1 by 13 to make the entry at 1,1 a 1.
चरण 4.1.1
Multiply each element of R1 by 13 to make the entry at 1,1 a 1.
[333303130303103010020001]
चरण 4.1.2
R1 को सरल करें.
[1101300103010020001]
[1101300103010020001]
चरण 4.2
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
चरण 4.2.1
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
[11013001-10-13-00-131-00-0020001]
चरण 4.2.2
R2 को सरल करें.
[11013000-13-1310020001]
[11013000-13-1310020001]
चरण 4.3
Multiply each element of R2 by -1 to make the entry at 2,2 a 1.
चरण 4.3.1
Multiply each element of R2 by -1 to make the entry at 2,2 a 1.
[1101300-0--1-1⋅3--13-1⋅1-0020001]
चरण 4.3.2
R2 को सरल करें.
[110130001-313-10020001]
[110130001-313-10020001]
चरण 4.4
Perform the row operation R3=R3-2R2 to make the entry at 3,2 a 0.
चरण 4.4.1
Perform the row operation R3=R3-2R2 to make the entry at 3,2 a 0.
[110130001-313-100-2⋅02-2⋅10-2⋅-30-2(13)0-2⋅-11-2⋅0]
चरण 4.4.2
R3 को सरल करें.
[110130001-313-10006-2321]
[110130001-313-10006-2321]
चरण 4.5
Multiply each element of R3 by 16 to make the entry at 3,3 a 1.
चरण 4.5.1
Multiply each element of R3 by 16 to make the entry at 3,3 a 1.
[110130001-313-10060666-2362616]
चरण 4.5.2
R3 को सरल करें.
[110130001-313-10001-191316]
[110130001-313-10001-191316]
चरण 4.6
Perform the row operation R2=R2+3R3 to make the entry at 2,3 a 0.
चरण 4.6.1
Perform the row operation R2=R2+3R3 to make the entry at 2,3 a 0.
[11013000+3⋅01+3⋅0-3+3⋅113+3(-19)-1+3(13)0+3(16)001-191316]
चरण 4.6.2
R2 को सरल करें.
[11013000100012001-191316]
[11013000100012001-191316]
चरण 4.7
Perform the row operation R1=R1-R2 to make the entry at 1,2 a 0.
चरण 4.7.1
Perform the row operation R1=R1-R2 to make the entry at 1,2 a 0.
[1-01-10-013-00-00-120100012001-191316]
चरण 4.7.2
R1 को सरल करें.
[100130-120100012001-191316]
[100130-120100012001-191316]
[100130-120100012001-191316]
चरण 5
The right half of the reduced row echelon form is the inverse.
[130-120012-191316]